Step |
Hyp |
Ref |
Expression |
1 |
|
df-ioo |
|- (,) = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a < x /\ x < b ) } ) |
2 |
|
df-ico |
|- [,) = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a <_ x /\ x < b ) } ) |
3 |
|
xrlenlt |
|- ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) ) |
4 |
1 2 3
|
ixxdisj |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A (,) B ) i^i ( B [,) C ) ) = (/) ) |
5 |
4
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B <_ C ) ) -> ( ( A (,) B ) i^i ( B [,) C ) ) = (/) ) |
6 |
|
xrltletr |
|- ( ( w e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w < B /\ B <_ C ) -> w < C ) ) |
7 |
|
xrltletr |
|- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A < B /\ B <_ w ) -> A < w ) ) |
8 |
1 2 3 1 6 7
|
ixxun |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B <_ C ) ) -> ( ( A (,) B ) u. ( B [,) C ) ) = ( A (,) C ) ) |
9 |
5 8
|
jca |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B <_ C ) ) -> ( ( ( A (,) B ) i^i ( B [,) C ) ) = (/) /\ ( ( A (,) B ) u. ( B [,) C ) ) = ( A (,) C ) ) ) |