Metamath Proof Explorer


Theorem joinlmulsubmuli

Description: Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses joinlmulsubmuli.1
|- A e. CC
joinlmulsubmuli.2
|- B e. CC
joinlmulsubmuli.3
|- C e. CC
joinlmulsubmuli.4
|- ( ( A x. B ) - ( C x. B ) ) = D
Assertion joinlmulsubmuli
|- ( ( A - C ) x. B ) = D

Proof

Step Hyp Ref Expression
1 joinlmulsubmuli.1
 |-  A e. CC
2 joinlmulsubmuli.2
 |-  B e. CC
3 joinlmulsubmuli.3
 |-  C e. CC
4 joinlmulsubmuli.4
 |-  ( ( A x. B ) - ( C x. B ) ) = D
5 1 3 2 subdiri
 |-  ( ( A - C ) x. B ) = ( ( A x. B ) - ( C x. B ) )
6 5 4 eqtri
 |-  ( ( A - C ) x. B ) = D