Metamath Proof Explorer


Theorem mvlrmuld

Description: Move the right term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvlrmuld.1
|- ( ph -> A e. CC )
mvlrmuld.2
|- ( ph -> B e. CC )
mvlrmuld.3
|- ( ph -> B =/= 0 )
mvlrmuld.4
|- ( ph -> ( A x. B ) = C )
Assertion mvlrmuld
|- ( ph -> A = ( C / B ) )

Proof

Step Hyp Ref Expression
1 mvlrmuld.1
 |-  ( ph -> A e. CC )
2 mvlrmuld.2
 |-  ( ph -> B e. CC )
3 mvlrmuld.3
 |-  ( ph -> B =/= 0 )
4 mvlrmuld.4
 |-  ( ph -> ( A x. B ) = C )
5 1 2 3 divcan4d
 |-  ( ph -> ( ( A x. B ) / B ) = A )
6 4 oveq1d
 |-  ( ph -> ( ( A x. B ) / B ) = ( C / B ) )
7 5 6 eqtr3d
 |-  ( ph -> A = ( C / B ) )