Description: Move the right term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvlrmuld.1 | |- ( ph -> A e. CC ) | |
| mvlrmuld.2 | |- ( ph -> B e. CC ) | ||
| mvlrmuld.3 | |- ( ph -> B =/= 0 ) | ||
| mvlrmuld.4 | |- ( ph -> ( A x. B ) = C ) | ||
| Assertion | mvlrmuld | |- ( ph -> A = ( C / B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mvlrmuld.1 | |- ( ph -> A e. CC ) | |
| 2 | mvlrmuld.2 | |- ( ph -> B e. CC ) | |
| 3 | mvlrmuld.3 | |- ( ph -> B =/= 0 ) | |
| 4 | mvlrmuld.4 | |- ( ph -> ( A x. B ) = C ) | |
| 5 | 1 2 3 | divcan4d | |- ( ph -> ( ( A x. B ) / B ) = A ) | 
| 6 | 4 | oveq1d | |- ( ph -> ( ( A x. B ) / B ) = ( C / B ) ) | 
| 7 | 5 6 | eqtr3d | |- ( ph -> A = ( C / B ) ) |