Metamath Proof Explorer
		
		
		
		Description:  Move the right term in a product on the LHS to the RHS, deduction form.
       (Contributed by David A. Wheeler, 11-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mvlrmuld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | mvlrmuld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
					
						|  |  | mvlrmuld.3 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
					
						|  |  | mvlrmuld.4 | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  =  𝐶 ) | 
				
					|  | Assertion | mvlrmuld | ⊢  ( 𝜑  →  𝐴  =  ( 𝐶  /  𝐵 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvlrmuld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | mvlrmuld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | mvlrmuld.3 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 4 |  | mvlrmuld.4 | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  =  𝐶 ) | 
						
							| 5 | 1 2 3 | divcan4d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  /  𝐵 )  =  𝐴 ) | 
						
							| 6 | 4 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  /  𝐵 )  =  ( 𝐶  /  𝐵 ) ) | 
						
							| 7 | 5 6 | eqtr3d | ⊢ ( 𝜑  →  𝐴  =  ( 𝐶  /  𝐵 ) ) |