Metamath Proof Explorer


Theorem mvlrmuld

Description: Move the right term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvlrmuld.1 φ A
mvlrmuld.2 φ B
mvlrmuld.3 φ B 0
mvlrmuld.4 φ A B = C
Assertion mvlrmuld φ A = C B

Proof

Step Hyp Ref Expression
1 mvlrmuld.1 φ A
2 mvlrmuld.2 φ B
3 mvlrmuld.3 φ B 0
4 mvlrmuld.4 φ A B = C
5 1 2 3 divcan4d φ A B B = A
6 4 oveq1d φ A B B = C B
7 5 6 eqtr3d φ A = C B