Metamath Proof Explorer
Description: Move the right term in a product on the LHS to the RHS, inference form.
(Contributed by David A. Wheeler, 11-Oct-2018)
|
|
Ref |
Expression |
|
Hypotheses |
mvlrmuli.1 |
|
|
|
mvlrmuli.2 |
|
|
|
mvlrmuli.3 |
|
|
|
mvlrmuli.4 |
|
|
Assertion |
mvlrmuli |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mvlrmuli.1 |
|
2 |
|
mvlrmuli.2 |
|
3 |
|
mvlrmuli.3 |
|
4 |
|
mvlrmuli.4 |
|
5 |
1 2 3
|
divcan4i |
|
6 |
4
|
oveq1i |
|
7 |
5 6
|
eqtr3i |
|