Metamath Proof Explorer
Description: Move the right term in a product on the LHS to the RHS, inference form.
(Contributed by David A. Wheeler, 11-Oct-2018)
|
|
Ref |
Expression |
|
Hypotheses |
mvlrmuli.1 |
⊢ 𝐴 ∈ ℂ |
|
|
mvlrmuli.2 |
⊢ 𝐵 ∈ ℂ |
|
|
mvlrmuli.3 |
⊢ 𝐵 ≠ 0 |
|
|
mvlrmuli.4 |
⊢ ( 𝐴 · 𝐵 ) = 𝐶 |
|
Assertion |
mvlrmuli |
⊢ 𝐴 = ( 𝐶 / 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvlrmuli.1 |
⊢ 𝐴 ∈ ℂ |
| 2 |
|
mvlrmuli.2 |
⊢ 𝐵 ∈ ℂ |
| 3 |
|
mvlrmuli.3 |
⊢ 𝐵 ≠ 0 |
| 4 |
|
mvlrmuli.4 |
⊢ ( 𝐴 · 𝐵 ) = 𝐶 |
| 5 |
1 2 3
|
divcan4i |
⊢ ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 |
| 6 |
4
|
oveq1i |
⊢ ( ( 𝐴 · 𝐵 ) / 𝐵 ) = ( 𝐶 / 𝐵 ) |
| 7 |
5 6
|
eqtr3i |
⊢ 𝐴 = ( 𝐶 / 𝐵 ) |