Metamath Proof Explorer
		
		
		
		Description:  Move the right term in a product on the LHS to the RHS, inference form.
       (Contributed by David A. Wheeler, 11-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mvlrmuli.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | mvlrmuli.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | mvlrmuli.3 | ⊢ 𝐵  ≠  0 | 
					
						|  |  | mvlrmuli.4 | ⊢ ( 𝐴  ·  𝐵 )  =  𝐶 | 
				
					|  | Assertion | mvlrmuli | ⊢  𝐴  =  ( 𝐶  /  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvlrmuli.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | mvlrmuli.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | mvlrmuli.3 | ⊢ 𝐵  ≠  0 | 
						
							| 4 |  | mvlrmuli.4 | ⊢ ( 𝐴  ·  𝐵 )  =  𝐶 | 
						
							| 5 | 1 2 3 | divcan4i | ⊢ ( ( 𝐴  ·  𝐵 )  /  𝐵 )  =  𝐴 | 
						
							| 6 | 4 | oveq1i | ⊢ ( ( 𝐴  ·  𝐵 )  /  𝐵 )  =  ( 𝐶  /  𝐵 ) | 
						
							| 7 | 5 6 | eqtr3i | ⊢ 𝐴  =  ( 𝐶  /  𝐵 ) |