Description: Move the right term in a product on the LHS to the RHS, inference form. (Contributed by David A. Wheeler, 11-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvlrmuli.1 | |- A e. CC | |
| mvlrmuli.2 | |- B e. CC | ||
| mvlrmuli.3 | |- B =/= 0 | ||
| mvlrmuli.4 | |- ( A x. B ) = C | ||
| Assertion | mvlrmuli | |- A = ( C / B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mvlrmuli.1 | |- A e. CC | |
| 2 | mvlrmuli.2 | |- B e. CC | |
| 3 | mvlrmuli.3 | |- B =/= 0 | |
| 4 | mvlrmuli.4 | |- ( A x. B ) = C | |
| 5 | 1 2 3 | divcan4i | |- ( ( A x. B ) / B ) = A | 
| 6 | 4 | oveq1i | |- ( ( A x. B ) / B ) = ( C / B ) | 
| 7 | 5 6 | eqtr3i | |- A = ( C / B ) |