Metamath Proof Explorer
		
		
		
		Description:  Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 11-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | joinlmulsubmuli.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | joinlmulsubmuli.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | joinlmulsubmuli.3 | ⊢ 𝐶  ∈  ℂ | 
					
						|  |  | joinlmulsubmuli.4 | ⊢ ( ( 𝐴  ·  𝐵 )  −  ( 𝐶  ·  𝐵 ) )  =  𝐷 | 
				
					|  | Assertion | joinlmulsubmuli | ⊢  ( ( 𝐴  −  𝐶 )  ·  𝐵 )  =  𝐷 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | joinlmulsubmuli.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | joinlmulsubmuli.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | joinlmulsubmuli.3 | ⊢ 𝐶  ∈  ℂ | 
						
							| 4 |  | joinlmulsubmuli.4 | ⊢ ( ( 𝐴  ·  𝐵 )  −  ( 𝐶  ·  𝐵 ) )  =  𝐷 | 
						
							| 5 | 1 3 2 | subdiri | ⊢ ( ( 𝐴  −  𝐶 )  ·  𝐵 )  =  ( ( 𝐴  ·  𝐵 )  −  ( 𝐶  ·  𝐵 ) ) | 
						
							| 6 | 5 4 | eqtri | ⊢ ( ( 𝐴  −  𝐶 )  ·  𝐵 )  =  𝐷 |