| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jumpncnp.k |
|- K = ( TopOpen ` CCfld ) |
| 2 |
|
jumpncnp.a |
|- ( ph -> A C_ RR ) |
| 3 |
|
jumpncnp.3 |
|- J = ( topGen ` ran (,) ) |
| 4 |
|
jumpncnp.f |
|- ( ph -> F : A --> CC ) |
| 5 |
|
jumpncnp.b |
|- ( ph -> B e. RR ) |
| 6 |
|
jumpncnp.lpt1 |
|- ( ph -> B e. ( ( limPt ` J ) ` ( A i^i ( -oo (,) B ) ) ) ) |
| 7 |
|
jumpncnp.lpt2 |
|- ( ph -> B e. ( ( limPt ` J ) ` ( A i^i ( B (,) +oo ) ) ) ) |
| 8 |
|
jumpncnp.8 |
|- ( ph -> L e. ( ( F |` ( -oo (,) B ) ) limCC B ) ) |
| 9 |
|
jumpncnp.9 |
|- ( ph -> R e. ( ( F |` ( B (,) +oo ) ) limCC B ) ) |
| 10 |
|
jumpncnp.lner |
|- ( ph -> L =/= R ) |
| 11 |
1 2 3 4 6 7 8 9 10
|
limclner |
|- ( ph -> ( F limCC B ) = (/) ) |
| 12 |
|
ne0i |
|- ( ( F ` B ) e. ( F limCC B ) -> ( F limCC B ) =/= (/) ) |
| 13 |
12
|
necon2bi |
|- ( ( F limCC B ) = (/) -> -. ( F ` B ) e. ( F limCC B ) ) |
| 14 |
11 13
|
syl |
|- ( ph -> -. ( F ` B ) e. ( F limCC B ) ) |
| 15 |
14
|
intnand |
|- ( ph -> -. ( F : RR --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) |
| 16 |
|
ax-resscn |
|- RR C_ CC |
| 17 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 18 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 19 |
3 18
|
eqtri |
|- J = ( ( TopOpen ` CCfld ) |`t RR ) |
| 20 |
17 19
|
cnplimc |
|- ( ( RR C_ CC /\ B e. RR ) -> ( F e. ( ( J CnP ( TopOpen ` CCfld ) ) ` B ) <-> ( F : RR --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
| 21 |
16 5 20
|
sylancr |
|- ( ph -> ( F e. ( ( J CnP ( TopOpen ` CCfld ) ) ` B ) <-> ( F : RR --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
| 22 |
15 21
|
mtbird |
|- ( ph -> -. F e. ( ( J CnP ( TopOpen ` CCfld ) ) ` B ) ) |