| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 2 |
1
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 3 |
2
|
a1i |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 4 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
| 5 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ ( -oo (,] 0 ) ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) |
| 6 |
2 4 5
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) |
| 7 |
6
|
a1i |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) |
| 8 |
|
id |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. ( CC \ ( -oo (,] 0 ) ) ) |
| 9 |
|
snidg |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. { A } ) |
| 10 |
9
|
adantr |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ x e. CC ) -> A e. { A } ) |
| 11 |
10
|
fmpttd |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> A ) : CC --> { A } ) |
| 12 |
|
cnconst |
|- ( ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) /\ ( A e. ( CC \ ( -oo (,] 0 ) ) /\ ( x e. CC |-> A ) : CC --> { A } ) ) -> ( x e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) |
| 13 |
3 7 8 11 12
|
syl22anc |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) ) ) |
| 14 |
3
|
cnmptid |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 15 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
| 16 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) |
| 17 |
15 1 16
|
cxpcn |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 18 |
17
|
a1i |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( y e. ( CC \ ( -oo (,] 0 ) ) , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( CC \ ( -oo (,] 0 ) ) ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 19 |
|
oveq12 |
|- ( ( y = A /\ z = x ) -> ( y ^c z ) = ( A ^c x ) ) |
| 20 |
3 13 14 7 3 18 19
|
cnmpt12 |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> ( A ^c x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 21 |
|
ssid |
|- CC C_ CC |
| 22 |
2
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 23 |
1 22 22
|
cncfcn |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 24 |
21 21 23
|
mp2an |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 25 |
24
|
eqcomi |
|- ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) = ( CC -cn-> CC ) |
| 26 |
25
|
a1i |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) = ( CC -cn-> CC ) ) |
| 27 |
20 26
|
eleqtrd |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( x e. CC |-> ( A ^c x ) ) e. ( CC -cn-> CC ) ) |