Metamath Proof Explorer


Theorem cxpcncf2

Description: The complex power function is continuous with respect to its second argument. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion cxpcncf2 A −∞ 0 x A x : cn

Proof

Step Hyp Ref Expression
1 eqid TopOpen fld = TopOpen fld
2 1 cnfldtopon TopOpen fld TopOn
3 2 a1i A −∞ 0 TopOpen fld TopOn
4 difss −∞ 0
5 resttopon TopOpen fld TopOn −∞ 0 TopOpen fld 𝑡 −∞ 0 TopOn −∞ 0
6 2 4 5 mp2an TopOpen fld 𝑡 −∞ 0 TopOn −∞ 0
7 6 a1i A −∞ 0 TopOpen fld 𝑡 −∞ 0 TopOn −∞ 0
8 id A −∞ 0 A −∞ 0
9 snidg A −∞ 0 A A
10 9 adantr A −∞ 0 x A A
11 10 fmpttd A −∞ 0 x A : A
12 cnconst TopOpen fld TopOn TopOpen fld 𝑡 −∞ 0 TopOn −∞ 0 A −∞ 0 x A : A x A TopOpen fld Cn TopOpen fld 𝑡 −∞ 0
13 3 7 8 11 12 syl22anc A −∞ 0 x A TopOpen fld Cn TopOpen fld 𝑡 −∞ 0
14 3 cnmptid A −∞ 0 x x TopOpen fld Cn TopOpen fld
15 eqid −∞ 0 = −∞ 0
16 eqid TopOpen fld 𝑡 −∞ 0 = TopOpen fld 𝑡 −∞ 0
17 15 1 16 cxpcn y −∞ 0 , z y z TopOpen fld 𝑡 −∞ 0 × t TopOpen fld Cn TopOpen fld
18 17 a1i A −∞ 0 y −∞ 0 , z y z TopOpen fld 𝑡 −∞ 0 × t TopOpen fld Cn TopOpen fld
19 oveq12 y = A z = x y z = A x
20 3 13 14 7 3 18 19 cnmpt12 A −∞ 0 x A x TopOpen fld Cn TopOpen fld
21 ssid
22 2 toponrestid TopOpen fld = TopOpen fld 𝑡
23 1 22 22 cncfcn cn = TopOpen fld Cn TopOpen fld
24 21 21 23 mp2an cn = TopOpen fld Cn TopOpen fld
25 24 eqcomi TopOpen fld Cn TopOpen fld = cn
26 25 a1i A −∞ 0 TopOpen fld Cn TopOpen fld = cn
27 20 26 eleqtrd A −∞ 0 x A x : cn