Metamath Proof Explorer


Theorem cxpcncf2

Description: The complex power function is continuous with respect to its second argument. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion cxpcncf2 A−∞0xAx:cn

Proof

Step Hyp Ref Expression
1 eqid TopOpenfld=TopOpenfld
2 1 cnfldtopon TopOpenfldTopOn
3 2 a1i A−∞0TopOpenfldTopOn
4 difss −∞0
5 resttopon TopOpenfldTopOn−∞0TopOpenfld𝑡−∞0TopOn−∞0
6 2 4 5 mp2an TopOpenfld𝑡−∞0TopOn−∞0
7 6 a1i A−∞0TopOpenfld𝑡−∞0TopOn−∞0
8 id A−∞0A−∞0
9 snidg A−∞0AA
10 9 adantr A−∞0xAA
11 10 fmpttd A−∞0xA:A
12 cnconst TopOpenfldTopOnTopOpenfld𝑡−∞0TopOn−∞0A−∞0xA:AxATopOpenfldCnTopOpenfld𝑡−∞0
13 3 7 8 11 12 syl22anc A−∞0xATopOpenfldCnTopOpenfld𝑡−∞0
14 3 cnmptid A−∞0xxTopOpenfldCnTopOpenfld
15 eqid −∞0=−∞0
16 eqid TopOpenfld𝑡−∞0=TopOpenfld𝑡−∞0
17 15 1 16 cxpcn y−∞0,zyzTopOpenfld𝑡−∞0×tTopOpenfldCnTopOpenfld
18 17 a1i A−∞0y−∞0,zyzTopOpenfld𝑡−∞0×tTopOpenfldCnTopOpenfld
19 oveq12 y=Az=xyz=Ax
20 3 13 14 7 3 18 19 cnmpt12 A−∞0xAxTopOpenfldCnTopOpenfld
21 ssid
22 2 toponrestid TopOpenfld=TopOpenfld𝑡
23 1 22 22 cncfcn cn=TopOpenfldCnTopOpenfld
24 21 21 23 mp2an cn=TopOpenfldCnTopOpenfld
25 24 eqcomi TopOpenfldCnTopOpenfld=cn
26 25 a1i A−∞0TopOpenfldCnTopOpenfld=cn
27 20 26 eleqtrd A−∞0xAx:cn