Metamath Proof Explorer


Theorem cnconst

Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007) (Proof shortened by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion cnconst JTopOnXKTopOnYBYF:XBFJCnK

Proof

Step Hyp Ref Expression
1 fconst2g BYF:XBF=X×B
2 1 adantl JTopOnXKTopOnYBYF:XBF=X×B
3 cnconst2 JTopOnXKTopOnYBYX×BJCnK
4 3 3expa JTopOnXKTopOnYBYX×BJCnK
5 eleq1 F=X×BFJCnKX×BJCnK
6 4 5 syl5ibrcom JTopOnXKTopOnYBYF=X×BFJCnK
7 2 6 sylbid JTopOnXKTopOnYBYF:XBFJCnK
8 7 impr JTopOnXKTopOnYBYF:XBFJCnK