Metamath Proof Explorer


Theorem cxpcn

Description: Domain of continuity of the complex power function. (Contributed by Mario Carneiro, 1-May-2016)

Ref Expression
Hypotheses cxpcn.d D=−∞0
cxpcn.j J=TopOpenfld
cxpcn.k K=J𝑡D
Assertion cxpcn xD,yxyK×tJCnJ

Proof

Step Hyp Ref Expression
1 cxpcn.d D=−∞0
2 cxpcn.j J=TopOpenfld
3 cxpcn.k K=J𝑡D
4 1 ellogdm xDxxx+
5 4 simplbi xDx
6 5 adantr xDyx
7 1 logdmn0 xDx0
8 7 adantr xDyx0
9 simpr xDyy
10 6 8 9 cxpefd xDyxy=eylogx
11 10 mpoeq3ia xD,yxy=xD,yeylogx
12 2 cnfldtopon JTopOn
13 12 a1i JTopOn
14 5 ssriv D
15 resttopon JTopOnDJ𝑡DTopOnD
16 13 14 15 sylancl J𝑡DTopOnD
17 3 16 eqeltrid KTopOnD
18 17 13 cnmpt2nd xD,yyK×tJCnJ
19 fvres xDlogDx=logx
20 19 adantr xDylogDx=logx
21 20 mpoeq3ia xD,ylogDx=xD,ylogx
22 17 13 cnmpt1st xD,yxK×tJCnK
23 1 logcn logD:Dcn
24 ssid
25 12 toponrestid J=J𝑡
26 2 3 25 cncfcn DDcn=KCnJ
27 14 24 26 mp2an Dcn=KCnJ
28 23 27 eleqtri logDKCnJ
29 28 a1i logDKCnJ
30 17 13 22 29 cnmpt21f xD,ylogDxK×tJCnJ
31 21 30 eqeltrrid xD,ylogxK×tJCnJ
32 2 mulcn ×J×tJCnJ
33 32 a1i ×J×tJCnJ
34 17 13 18 31 33 cnmpt22f xD,yylogxK×tJCnJ
35 efcn exp:cn
36 2 cncfcn1 cn=JCnJ
37 35 36 eleqtri expJCnJ
38 37 a1i expJCnJ
39 17 13 34 38 cnmpt21f xD,yeylogxK×tJCnJ
40 39 mptru xD,yeylogxK×tJCnJ
41 11 40 eqeltri xD,yxyK×tJCnJ