| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 2 |
1
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 4 |
|
difss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ |
| 5 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 6 |
2 4 5
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 8 |
|
id |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 9 |
|
snidg |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ∈ { 𝐴 } ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ { 𝐴 } ) |
| 11 |
10
|
fmpttd |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) : ℂ ⟶ { 𝐴 } ) |
| 12 |
|
cnconst |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ∧ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ ( 𝑥 ∈ ℂ ↦ 𝐴 ) : ℂ ⟶ { 𝐴 } ) ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ) |
| 13 |
3 7 8 11 12
|
syl22anc |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ) |
| 14 |
3
|
cnmptid |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 15 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 16 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 17 |
15 1 16
|
cxpcn |
⊢ ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑧 ∈ ℂ ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 18 |
17
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑧 ∈ ℂ ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 19 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝑥 ) → ( 𝑦 ↑𝑐 𝑧 ) = ( 𝐴 ↑𝑐 𝑥 ) ) |
| 20 |
3 13 14 7 3 18 19
|
cnmpt12 |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝐴 ↑𝑐 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 21 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 22 |
2
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 23 |
1 22 22
|
cncfcn |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 24 |
21 21 23
|
mp2an |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 25 |
24
|
eqcomi |
⊢ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) = ( ℂ –cn→ ℂ ) |
| 26 |
25
|
a1i |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) = ( ℂ –cn→ ℂ ) ) |
| 27 |
20 26
|
eleqtrd |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝐴 ↑𝑐 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |