| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodcncf.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 2 |
|
fprodcncf.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 3 |
|
fprodcncf.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 4 |
|
fprodcncf.cn |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 5 |
|
prodeq1 |
⊢ ( 𝑤 = ∅ → ∏ 𝑘 ∈ 𝑤 𝐶 = ∏ 𝑘 ∈ ∅ 𝐶 ) |
| 6 |
5
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ∅ 𝐶 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ∅ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
| 8 |
|
prodeq1 |
⊢ ( 𝑤 = 𝑧 → ∏ 𝑘 ∈ 𝑤 𝐶 = ∏ 𝑘 ∈ 𝑧 𝐶 ) |
| 9 |
8
|
mpteq2dv |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
| 11 |
|
prodeq1 |
⊢ ( 𝑤 = ( 𝑧 ∪ { 𝑦 } ) → ∏ 𝑘 ∈ 𝑤 𝐶 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) |
| 12 |
11
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑧 ∪ { 𝑦 } ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) ) |
| 13 |
12
|
eleq1d |
⊢ ( 𝑤 = ( 𝑧 ∪ { 𝑦 } ) → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
| 14 |
|
prodeq1 |
⊢ ( 𝑤 = 𝐵 → ∏ 𝑘 ∈ 𝑤 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
| 15 |
14
|
mpteq2dv |
⊢ ( 𝑤 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝐵 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
| 17 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐶 = 1 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ 𝐶 = 1 ) |
| 19 |
18
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ∅ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 1 ) ) |
| 20 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 21 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 22 |
1 20 21
|
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 1 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 23 |
19 22
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ∅ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑢 ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑧 ∪ { 𝑦 } ) |
| 26 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 |
| 27 |
25 26
|
nfcprod |
⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 |
| 28 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ) → 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 30 |
29
|
prodeq2dv |
⊢ ( 𝑥 = 𝑢 → ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 31 |
24 27 30
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 32 |
31
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) |
| 34 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 |
| 35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝐵 ∈ Fin ) |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ⊆ 𝐵 ) |
| 37 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ∈ Fin ) |
| 38 |
35 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ∈ Fin ) |
| 39 |
38
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → 𝑧 ∈ Fin ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑧 ∈ Fin ) |
| 41 |
|
vex |
⊢ 𝑦 ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑦 ∈ V ) |
| 43 |
|
eldifn |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) → ¬ 𝑦 ∈ 𝑧 ) |
| 44 |
43
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → ¬ 𝑦 ∈ 𝑧 ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ¬ 𝑦 ∈ 𝑧 ) |
| 46 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝜑 ) |
| 47 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝑢 ∈ 𝐴 ) |
| 48 |
36
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → 𝑧 ⊆ 𝐵 ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝑧 ⊆ 𝐵 ) |
| 50 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝑘 ∈ 𝑧 ) |
| 51 |
49 50
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝑘 ∈ 𝐵 ) |
| 52 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) |
| 53 |
26
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ |
| 54 |
52 53
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 55 |
|
eleq1w |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴 ) ) |
| 56 |
55
|
3anbi2d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
| 57 |
28
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) |
| 58 |
56 57
|
imbi12d |
⊢ ( 𝑥 = 𝑢 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) ) |
| 59 |
54 58 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 60 |
46 47 51 59
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 61 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 62 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝜑 ) |
| 63 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) → 𝑦 ∈ 𝐵 ) |
| 64 |
63
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
| 66 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐴 ) |
| 67 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐴 ) → 𝜑 ) |
| 68 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐴 ) |
| 69 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
| 70 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
| 71 |
|
nfcv |
⊢ Ⅎ 𝑘 ℂ |
| 72 |
34 71
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ |
| 73 |
70 72
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 74 |
|
eleq1w |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 75 |
74
|
3anbi3d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 76 |
61
|
eleq1d |
⊢ ( 𝑘 = 𝑦 → ( ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ↔ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) |
| 77 |
75 76
|
imbi12d |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) ) |
| 78 |
73 77 59
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 79 |
67 68 69 78
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 80 |
62 65 66 79
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 81 |
33 34 40 42 45 60 61 80
|
fprodsplitsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 = ( ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 · ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) |
| 82 |
81
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ( ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 · ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ( ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 · ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) ) |
| 84 |
|
nfcv |
⊢ Ⅎ 𝑢 ∏ 𝑘 ∈ 𝑧 𝐶 |
| 85 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 86 |
85 26
|
nfcprod |
⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 |
| 87 |
28
|
adantr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑘 ∈ 𝑧 ) → 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 88 |
87
|
prodeq2dv |
⊢ ( 𝑥 = 𝑢 → ∏ 𝑘 ∈ 𝑧 𝐶 = ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 89 |
84 86 88
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 90 |
89
|
eqcomi |
⊢ ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) |
| 91 |
90
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ) |
| 92 |
|
id |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 93 |
91 92
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 95 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) |
| 96 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 97 |
96 34
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 98 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐴 –cn→ ℂ ) |
| 99 |
97 98
|
nfel |
⊢ Ⅎ 𝑘 ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) |
| 100 |
95 99
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 101 |
74
|
anbi2d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 102 |
61
|
adantr |
⊢ ( ( 𝑘 = 𝑦 ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 103 |
102
|
mpteq2dva |
⊢ ( 𝑘 = 𝑦 → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) |
| 104 |
103
|
eleq1d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
| 105 |
101 104
|
imbi12d |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) ) |
| 106 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐶 |
| 107 |
106 26 28
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
| 108 |
107 4
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 109 |
100 105 108
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 110 |
64 109
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 111 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 112 |
94 111
|
mulcncf |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ( ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 · ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 113 |
83 112
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 114 |
32 113
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 115 |
114
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
| 116 |
7 10 13 16 23 115 2
|
findcard2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝐵 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |