| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v |  |-  V = ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e |  |-  E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> | 
						
							| 3 |  | konigsberg.g |  |-  G = <. V , E >. | 
						
							| 4 | 1 2 3 | konigsbergiedgw |  |-  E e. Word { x e. ~P V | ( # ` x ) = 2 } | 
						
							| 5 |  | opex |  |-  <. V , E >. e. _V | 
						
							| 6 | 3 5 | eqeltri |  |-  G e. _V | 
						
							| 7 |  | s7cli |  |-  <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> e. Word _V | 
						
							| 8 | 2 7 | eqeltri |  |-  E e. Word _V | 
						
							| 9 | 1 2 3 | konigsbergvtx |  |-  ( Vtx ` G ) = ( 0 ... 3 ) | 
						
							| 10 | 1 9 | eqtr4i |  |-  V = ( Vtx ` G ) | 
						
							| 11 | 1 2 3 | konigsbergiedg |  |-  ( iEdg ` G ) = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> | 
						
							| 12 | 2 11 | eqtr4i |  |-  E = ( iEdg ` G ) | 
						
							| 13 | 10 12 | wrdumgr |  |-  ( ( G e. _V /\ E e. Word _V ) -> ( G e. UMGraph <-> E e. Word { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 14 | 6 8 13 | mp2an |  |-  ( G e. UMGraph <-> E e. Word { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 15 | 4 14 | mpbir |  |-  G e. UMGraph |