Metamath Proof Explorer


Theorem konigsbergumgr

Description: The Königsberg graph G is a multigraph. (Contributed by AV, 28-Feb-2021) (Revised by AV, 9-Mar-2021)

Ref Expression
Hypotheses konigsberg.v 𝑉 = ( 0 ... 3 )
konigsberg.e 𝐸 = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
konigsberg.g 𝐺 = ⟨ 𝑉 , 𝐸
Assertion konigsbergumgr 𝐺 ∈ UMGraph

Proof

Step Hyp Ref Expression
1 konigsberg.v 𝑉 = ( 0 ... 3 )
2 konigsberg.e 𝐸 = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
3 konigsberg.g 𝐺 = ⟨ 𝑉 , 𝐸
4 1 2 3 konigsbergiedgw 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
5 opex 𝑉 , 𝐸 ⟩ ∈ V
6 3 5 eqeltri 𝐺 ∈ V
7 s7cli ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩ ∈ Word V
8 2 7 eqeltri 𝐸 ∈ Word V
9 1 2 3 konigsbergvtx ( Vtx ‘ 𝐺 ) = ( 0 ... 3 )
10 1 9 eqtr4i 𝑉 = ( Vtx ‘ 𝐺 )
11 1 2 3 konigsbergiedg ( iEdg ‘ 𝐺 ) = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
12 2 11 eqtr4i 𝐸 = ( iEdg ‘ 𝐺 )
13 10 12 wrdumgr ( ( 𝐺 ∈ V ∧ 𝐸 ∈ Word V ) → ( 𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
14 6 8 13 mp2an ( 𝐺 ∈ UMGraph ↔ 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
15 4 14 mpbir 𝐺 ∈ UMGraph