Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
β’ π = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
β’ πΈ = β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© |
3 |
|
konigsberg.g |
β’ πΊ = β¨ π , πΈ β© |
4 |
|
ovex |
β’ ( 0 ... 3 ) β V |
5 |
|
s6cli |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β Word V |
6 |
5
|
elexi |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β V |
7 |
4 6
|
opvtxfvi |
β’ ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β© ) = ( 0 ... 3 ) |
8 |
7
|
eqcomi |
β’ ( 0 ... 3 ) = ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β© ) |
9 |
|
3nn0 |
β’ 3 β β0 |
10 |
|
0elfz |
β’ ( 3 β β0 β 0 β ( 0 ... 3 ) ) |
11 |
9 10
|
ax-mp |
β’ 0 β ( 0 ... 3 ) |
12 |
4 6
|
opiedgfvi |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β© ) = β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© |
13 |
12
|
eqcomi |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© = ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β© ) |
14 |
|
s1cli |
β’ β¨β { 2 , 3 } ββ© β Word V |
15 |
|
df-s7 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© ++ β¨β { 2 , 3 } ββ© ) |
16 |
|
eqid |
β’ ( 0 ... 3 ) = ( 0 ... 3 ) |
17 |
|
eqid |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© |
18 |
|
eqid |
β’ β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β© = β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β© |
19 |
16 17 18
|
konigsbergssiedgw |
β’ ( ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β Word V β§ β¨β { 2 , 3 } ββ© β Word V β§ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© ++ β¨β { 2 , 3 } ββ© ) ) β β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } ) |
20 |
5 14 15 19
|
mp3an |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } |
21 |
|
s5cli |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β Word V |
22 |
21
|
elexi |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β V |
23 |
4 22
|
opvtxfvi |
β’ ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β© ) = ( 0 ... 3 ) |
24 |
23
|
eqcomi |
β’ ( 0 ... 3 ) = ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β© ) |
25 |
4 22
|
opiedgfvi |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β© ) = β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© |
26 |
25
|
eqcomi |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© = ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β© ) |
27 |
|
s2cli |
β’ β¨β { 2 , 3 } { 2 , 3 } ββ© β Word V |
28 |
|
s5s2 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© ++ β¨β { 2 , 3 } { 2 , 3 } ββ© ) |
29 |
16 17 18
|
konigsbergssiedgw |
β’ ( ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β Word V β§ β¨β { 2 , 3 } { 2 , 3 } ββ© β Word V β§ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© ++ β¨β { 2 , 3 } { 2 , 3 } ββ© ) ) β β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } ) |
30 |
21 27 28 29
|
mp3an |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } |
31 |
|
s4cli |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β Word V |
32 |
31
|
elexi |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β V |
33 |
4 32
|
opvtxfvi |
β’ ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β© ) = ( 0 ... 3 ) |
34 |
33
|
eqcomi |
β’ ( 0 ... 3 ) = ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β© ) |
35 |
4 32
|
opiedgfvi |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β© ) = β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© |
36 |
35
|
eqcomi |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© = ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β© ) |
37 |
|
s3cli |
β’ β¨β { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word V |
38 |
|
s4s3 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© ++ β¨β { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© ) |
39 |
16 17 18
|
konigsbergssiedgw |
β’ ( ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β Word V β§ β¨β { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word V β§ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© ++ β¨β { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© ) ) β β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } ) |
40 |
31 37 38 39
|
mp3an |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } |
41 |
|
s3cli |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β Word V |
42 |
41
|
elexi |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β V |
43 |
4 42
|
opvtxfvi |
β’ ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β© ) = ( 0 ... 3 ) |
44 |
43
|
eqcomi |
β’ ( 0 ... 3 ) = ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β© ) |
45 |
4 42
|
opiedgfvi |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β© ) = β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© |
46 |
45
|
eqcomi |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© = ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β© ) |
47 |
|
s4cli |
β’ β¨β { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word V |
48 |
|
s3s4 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© ++ β¨β { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© ) |
49 |
16 17 18
|
konigsbergssiedgw |
β’ ( ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β Word V β§ β¨β { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word V β§ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© ++ β¨β { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© ) ) β β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } ) |
50 |
41 47 48 49
|
mp3an |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } |
51 |
|
s2cli |
β’ β¨β { 0 , 1 } { 0 , 2 } ββ© β Word V |
52 |
51
|
elexi |
β’ β¨β { 0 , 1 } { 0 , 2 } ββ© β V |
53 |
4 52
|
opvtxfvi |
β’ ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } ββ© β© ) = ( 0 ... 3 ) |
54 |
53
|
eqcomi |
β’ ( 0 ... 3 ) = ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } ββ© β© ) |
55 |
4 52
|
opiedgfvi |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } ββ© β© ) = β¨β { 0 , 1 } { 0 , 2 } ββ© |
56 |
55
|
eqcomi |
β’ β¨β { 0 , 1 } { 0 , 2 } ββ© = ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } ββ© β© ) |
57 |
|
s5cli |
β’ β¨β { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word V |
58 |
|
s2s5 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } ββ© ++ β¨β { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© ) |
59 |
16 17 18
|
konigsbergssiedgw |
β’ ( ( β¨β { 0 , 1 } { 0 , 2 } ββ© β Word V β§ β¨β { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word V β§ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } ββ© ++ β¨β { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© ) ) β β¨β { 0 , 1 } { 0 , 2 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } ) |
60 |
51 57 58 59
|
mp3an |
β’ β¨β { 0 , 1 } { 0 , 2 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } |
61 |
|
s1cli |
β’ β¨β { 0 , 1 } ββ© β Word V |
62 |
61
|
elexi |
β’ β¨β { 0 , 1 } ββ© β V |
63 |
4 62
|
opvtxfvi |
β’ ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } ββ© β© ) = ( 0 ... 3 ) |
64 |
63
|
eqcomi |
β’ ( 0 ... 3 ) = ( Vtx β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } ββ© β© ) |
65 |
4 62
|
opiedgfvi |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } ββ© β© ) = β¨β { 0 , 1 } ββ© |
66 |
65
|
eqcomi |
β’ β¨β { 0 , 1 } ββ© = ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } ββ© β© ) |
67 |
|
s6cli |
β’ β¨β { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word V |
68 |
|
s1s6 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } ββ© ++ β¨β { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© ) |
69 |
16 17 18
|
konigsbergssiedgw |
β’ ( ( β¨β { 0 , 1 } ββ© β Word V β§ β¨β { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word V β§ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } ββ© ++ β¨β { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© ) ) β β¨β { 0 , 1 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } ) |
70 |
61 67 68 69
|
mp3an |
β’ β¨β { 0 , 1 } ββ© β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } |
71 |
|
0ex |
β’ β
β V |
72 |
4 71
|
opvtxfvi |
β’ ( Vtx β β¨ ( 0 ... 3 ) , β
β© ) = ( 0 ... 3 ) |
73 |
72
|
eqcomi |
β’ ( 0 ... 3 ) = ( Vtx β β¨ ( 0 ... 3 ) , β
β© ) |
74 |
4 71
|
opiedgfvi |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β
β© ) = β
|
75 |
74
|
eqcomi |
β’ β
= ( iEdg β β¨ ( 0 ... 3 ) , β
β© ) |
76 |
|
wrd0 |
β’ β
β Word { π₯ β ( π« ( 0 ... 3 ) β { β
} ) β£ ( β― β π₯ ) β€ 2 } |
77 |
|
eqid |
β’ β
= β
|
78 |
73 75
|
vtxdg0e |
β’ ( ( 0 β ( 0 ... 3 ) β§ β
= β
) β ( ( VtxDeg β β¨ ( 0 ... 3 ) , β
β© ) β 0 ) = 0 ) |
79 |
11 77 78
|
mp2an |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β
β© ) β 0 ) = 0 |
80 |
|
1nn0 |
β’ 1 β β0 |
81 |
|
1le3 |
β’ 1 β€ 3 |
82 |
|
elfz2nn0 |
β’ ( 1 β ( 0 ... 3 ) β ( 1 β β0 β§ 3 β β0 β§ 1 β€ 3 ) ) |
83 |
80 9 81 82
|
mpbir3an |
β’ 1 β ( 0 ... 3 ) |
84 |
|
ax-1ne0 |
β’ 1 β 0 |
85 |
|
s0s1 |
β’ β¨β { 0 , 1 } ββ© = ( β
++ β¨β { 0 , 1 } ββ© ) |
86 |
65 85
|
eqtri |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } ββ© β© ) = ( β
++ β¨β { 0 , 1 } ββ© ) |
87 |
73 11 75 76 79 63 83 84 86
|
vdegp1bi |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } ββ© β© ) β 0 ) = ( 0 + 1 ) |
88 |
|
0p1e1 |
β’ ( 0 + 1 ) = 1 |
89 |
87 88
|
eqtri |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } ββ© β© ) β 0 ) = 1 |
90 |
|
2nn0 |
β’ 2 β β0 |
91 |
|
2re |
β’ 2 β β |
92 |
|
3re |
β’ 3 β β |
93 |
|
2lt3 |
β’ 2 < 3 |
94 |
91 92 93
|
ltleii |
β’ 2 β€ 3 |
95 |
|
elfz2nn0 |
β’ ( 2 β ( 0 ... 3 ) β ( 2 β β0 β§ 3 β β0 β§ 2 β€ 3 ) ) |
96 |
90 9 94 95
|
mpbir3an |
β’ 2 β ( 0 ... 3 ) |
97 |
|
2ne0 |
β’ 2 β 0 |
98 |
|
df-s2 |
β’ β¨β { 0 , 1 } { 0 , 2 } ββ© = ( β¨β { 0 , 1 } ββ© ++ β¨β { 0 , 2 } ββ© ) |
99 |
55 98
|
eqtri |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } ββ© β© ) = ( β¨β { 0 , 1 } ββ© ++ β¨β { 0 , 2 } ββ© ) |
100 |
64 11 66 70 89 53 96 97 99
|
vdegp1bi |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } ββ© β© ) β 0 ) = ( 1 + 1 ) |
101 |
|
1p1e2 |
β’ ( 1 + 1 ) = 2 |
102 |
100 101
|
eqtri |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } ββ© β© ) β 0 ) = 2 |
103 |
|
nn0fz0 |
β’ ( 3 β β0 β 3 β ( 0 ... 3 ) ) |
104 |
9 103
|
mpbi |
β’ 3 β ( 0 ... 3 ) |
105 |
|
3ne0 |
β’ 3 β 0 |
106 |
|
df-s3 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } ββ© ++ β¨β { 0 , 3 } ββ© ) |
107 |
45 106
|
eqtri |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β© ) = ( β¨β { 0 , 1 } { 0 , 2 } ββ© ++ β¨β { 0 , 3 } ββ© ) |
108 |
54 11 56 60 102 43 104 105 107
|
vdegp1bi |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β© ) β 0 ) = ( 2 + 1 ) |
109 |
|
2p1e3 |
β’ ( 2 + 1 ) = 3 |
110 |
108 109
|
eqtri |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© β© ) β 0 ) = 3 |
111 |
|
df-s4 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© ++ β¨β { 1 , 2 } ββ© ) |
112 |
35 111
|
eqtri |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β© ) = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } ββ© ++ β¨β { 1 , 2 } ββ© ) |
113 |
44 11 46 50 110 33 83 84 96 97 112
|
vdegp1ai |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© β© ) β 0 ) = 3 |
114 |
|
df-s5 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© ++ β¨β { 1 , 2 } ββ© ) |
115 |
25 114
|
eqtri |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β© ) = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } ββ© ++ β¨β { 1 , 2 } ββ© ) |
116 |
34 11 36 40 113 23 83 84 96 97 115
|
vdegp1ai |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© β© ) β 0 ) = 3 |
117 |
|
df-s6 |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© ++ β¨β { 2 , 3 } ββ© ) |
118 |
12 117
|
eqtri |
β’ ( iEdg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β© ) = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } ββ© ++ β¨β { 2 , 3 } ββ© ) |
119 |
24 11 26 30 116 7 96 97 104 105 118
|
vdegp1ai |
β’ ( ( VtxDeg β β¨ ( 0 ... 3 ) , β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© β© ) β 0 ) = 3 |
120 |
1 2 3
|
konigsbergvtx |
β’ ( Vtx β πΊ ) = ( 0 ... 3 ) |
121 |
1 2 3
|
konigsbergiedg |
β’ ( iEdg β πΊ ) = β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© |
122 |
121 15
|
eqtri |
β’ ( iEdg β πΊ ) = ( β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } ββ© ++ β¨β { 2 , 3 } ββ© ) |
123 |
8 11 13 20 119 120 96 97 104 105 122
|
vdegp1ai |
β’ ( ( VtxDeg β πΊ ) β 0 ) = 3 |