| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v | ⊢ 𝑉  =  ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e | ⊢ 𝐸  =  〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉 | 
						
							| 3 |  | konigsberg.g | ⊢ 𝐺  =  〈 𝑉 ,  𝐸 〉 | 
						
							| 4 | 1 2 3 | konigsbergssiedgwpr | ⊢ ( ( 𝐴  ∈  Word  V  ∧  𝐵  ∈  Word  V  ∧  𝐸  =  ( 𝐴  ++  𝐵 ) )  →  𝐴  ∈  Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 5 |  | wrdf | ⊢ ( 𝐴  ∈  Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 6 |  | prprrab | ⊢ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  =  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 7 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 8 | 7 | eqlei2 | ⊢ ( ( ♯ ‘ 𝑥 )  =  2  →  ( ♯ ‘ 𝑥 )  ≤  2 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  →  ( ( ♯ ‘ 𝑥 )  =  2  →  ( ♯ ‘ 𝑥 )  ≤  2 ) ) | 
						
							| 10 | 9 | ss2rabi | ⊢ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ⊆  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } | 
						
							| 11 | 6 10 | eqsstrri | ⊢ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ⊆  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } | 
						
							| 12 |  | fss | ⊢ ( ( 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ∧  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ⊆  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } )  →  𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 13 | 11 12 | mpan2 | ⊢ ( 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 14 |  | iswrdb | ⊢ ( 𝐴  ∈  Word  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ↔  𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  𝐴  ∈  Word  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 16 | 4 5 15 | 3syl | ⊢ ( ( 𝐴  ∈  Word  V  ∧  𝐵  ∈  Word  V  ∧  𝐸  =  ( 𝐴  ++  𝐵 ) )  →  𝐴  ∈  Word  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) |