| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v | ⊢ 𝑉  =  ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e | ⊢ 𝐸  =  〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉 | 
						
							| 3 |  | konigsberg.g | ⊢ 𝐺  =  〈 𝑉 ,  𝐸 〉 | 
						
							| 4 | 1 2 3 | konigsbergiedgw | ⊢ 𝐸  ∈  Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 5 | 4 | jctr | ⊢ ( 𝐸  =  ( 𝐴  ++  𝐵 )  →  ( 𝐸  =  ( 𝐴  ++  𝐵 )  ∧  𝐸  ∈  Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 6 |  | ccatrcl1 | ⊢ ( ( 𝐴  ∈  Word  V  ∧  𝐵  ∈  Word  V  ∧  ( 𝐸  =  ( 𝐴  ++  𝐵 )  ∧  𝐸  ∈  Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) )  →  𝐴  ∈  Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 7 | 5 6 | syl3an3 | ⊢ ( ( 𝐴  ∈  Word  V  ∧  𝐵  ∈  Word  V  ∧  𝐸  =  ( 𝐴  ++  𝐵 ) )  →  𝐴  ∈  Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) |