| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v | ⊢ 𝑉  =  ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e | ⊢ 𝐸  =  〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉 | 
						
							| 3 |  | konigsberg.g | ⊢ 𝐺  =  〈 𝑉 ,  𝐸 〉 | 
						
							| 4 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 5 |  | 0elfz | ⊢ ( 3  ∈  ℕ0  →  0  ∈  ( 0 ... 3 ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ 0  ∈  ( 0 ... 3 ) | 
						
							| 7 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 8 |  | 1le3 | ⊢ 1  ≤  3 | 
						
							| 9 |  | elfz2nn0 | ⊢ ( 1  ∈  ( 0 ... 3 )  ↔  ( 1  ∈  ℕ0  ∧  3  ∈  ℕ0  ∧  1  ≤  3 ) ) | 
						
							| 10 | 7 4 8 9 | mpbir3an | ⊢ 1  ∈  ( 0 ... 3 ) | 
						
							| 11 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 12 | 6 10 11 | umgrbi | ⊢ { 0 ,  1 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 13 | 12 | a1i | ⊢ ( ⊤  →  { 0 ,  1 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 14 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 15 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 16 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 17 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 18 | 15 16 17 | ltleii | ⊢ 2  ≤  3 | 
						
							| 19 |  | elfz2nn0 | ⊢ ( 2  ∈  ( 0 ... 3 )  ↔  ( 2  ∈  ℕ0  ∧  3  ∈  ℕ0  ∧  2  ≤  3 ) ) | 
						
							| 20 | 14 4 18 19 | mpbir3an | ⊢ 2  ∈  ( 0 ... 3 ) | 
						
							| 21 |  | 0ne2 | ⊢ 0  ≠  2 | 
						
							| 22 | 6 20 21 | umgrbi | ⊢ { 0 ,  2 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 23 | 22 | a1i | ⊢ ( ⊤  →  { 0 ,  2 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 24 |  | nn0fz0 | ⊢ ( 3  ∈  ℕ0  ↔  3  ∈  ( 0 ... 3 ) ) | 
						
							| 25 | 4 24 | mpbi | ⊢ 3  ∈  ( 0 ... 3 ) | 
						
							| 26 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 27 | 26 | necomi | ⊢ 0  ≠  3 | 
						
							| 28 | 6 25 27 | umgrbi | ⊢ { 0 ,  3 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 29 | 28 | a1i | ⊢ ( ⊤  →  { 0 ,  3 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 30 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 31 | 10 20 30 | umgrbi | ⊢ { 1 ,  2 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 32 | 31 | a1i | ⊢ ( ⊤  →  { 1 ,  2 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 33 | 15 17 | ltneii | ⊢ 2  ≠  3 | 
						
							| 34 | 20 25 33 | umgrbi | ⊢ { 2 ,  3 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 35 | 34 | a1i | ⊢ ( ⊤  →  { 2 ,  3 }  ∈  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 36 | 13 23 29 32 32 35 35 | s7cld | ⊢ ( ⊤  →  〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉  ∈  Word  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 37 | 36 | mptru | ⊢ 〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉  ∈  Word  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 38 | 1 | pweqi | ⊢ 𝒫  𝑉  =  𝒫  ( 0 ... 3 ) | 
						
							| 39 | 38 | rabeqi | ⊢ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  =  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 40 | 39 | wrdeqi | ⊢ Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  =  Word  { 𝑥  ∈  𝒫  ( 0 ... 3 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 41 | 37 2 40 | 3eltr4i | ⊢ 𝐸  ∈  Word  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } |