Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
β’ π = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
β’ πΈ = β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© |
3 |
|
konigsberg.g |
β’ πΊ = β¨ π , πΈ β© |
4 |
|
3nn0 |
β’ 3 β β0 |
5 |
|
0elfz |
β’ ( 3 β β0 β 0 β ( 0 ... 3 ) ) |
6 |
4 5
|
ax-mp |
β’ 0 β ( 0 ... 3 ) |
7 |
|
1nn0 |
β’ 1 β β0 |
8 |
|
1le3 |
β’ 1 β€ 3 |
9 |
|
elfz2nn0 |
β’ ( 1 β ( 0 ... 3 ) β ( 1 β β0 β§ 3 β β0 β§ 1 β€ 3 ) ) |
10 |
7 4 8 9
|
mpbir3an |
β’ 1 β ( 0 ... 3 ) |
11 |
|
0ne1 |
β’ 0 β 1 |
12 |
6 10 11
|
umgrbi |
β’ { 0 , 1 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } |
13 |
12
|
a1i |
β’ ( β€ β { 0 , 1 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } ) |
14 |
|
2nn0 |
β’ 2 β β0 |
15 |
|
2re |
β’ 2 β β |
16 |
|
3re |
β’ 3 β β |
17 |
|
2lt3 |
β’ 2 < 3 |
18 |
15 16 17
|
ltleii |
β’ 2 β€ 3 |
19 |
|
elfz2nn0 |
β’ ( 2 β ( 0 ... 3 ) β ( 2 β β0 β§ 3 β β0 β§ 2 β€ 3 ) ) |
20 |
14 4 18 19
|
mpbir3an |
β’ 2 β ( 0 ... 3 ) |
21 |
|
0ne2 |
β’ 0 β 2 |
22 |
6 20 21
|
umgrbi |
β’ { 0 , 2 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } |
23 |
22
|
a1i |
β’ ( β€ β { 0 , 2 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } ) |
24 |
|
nn0fz0 |
β’ ( 3 β β0 β 3 β ( 0 ... 3 ) ) |
25 |
4 24
|
mpbi |
β’ 3 β ( 0 ... 3 ) |
26 |
|
3ne0 |
β’ 3 β 0 |
27 |
26
|
necomi |
β’ 0 β 3 |
28 |
6 25 27
|
umgrbi |
β’ { 0 , 3 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } |
29 |
28
|
a1i |
β’ ( β€ β { 0 , 3 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } ) |
30 |
|
1ne2 |
β’ 1 β 2 |
31 |
10 20 30
|
umgrbi |
β’ { 1 , 2 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } |
32 |
31
|
a1i |
β’ ( β€ β { 1 , 2 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } ) |
33 |
15 17
|
ltneii |
β’ 2 β 3 |
34 |
20 25 33
|
umgrbi |
β’ { 2 , 3 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } |
35 |
34
|
a1i |
β’ ( β€ β { 2 , 3 } β { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } ) |
36 |
13 23 29 32 32 35 35
|
s7cld |
β’ ( β€ β β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } ) |
37 |
36
|
mptru |
β’ β¨β { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ββ© β Word { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } |
38 |
1
|
pweqi |
β’ π« π = π« ( 0 ... 3 ) |
39 |
38
|
rabeqi |
β’ { π₯ β π« π β£ ( β― β π₯ ) = 2 } = { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } |
40 |
39
|
wrdeqi |
β’ Word { π₯ β π« π β£ ( β― β π₯ ) = 2 } = Word { π₯ β π« ( 0 ... 3 ) β£ ( β― β π₯ ) = 2 } |
41 |
37 2 40
|
3eltr4i |
β’ πΈ β Word { π₯ β π« π β£ ( β― β π₯ ) = 2 } |