Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
|- V = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
|- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
3 |
|
konigsberg.g |
|- G = <. V , E >. |
4 |
1 2 3
|
konigsbergssiedgwpr |
|- ( ( A e. Word _V /\ B e. Word _V /\ E = ( A ++ B ) ) -> A e. Word { x e. ~P V | ( # ` x ) = 2 } ) |
5 |
|
wrdf |
|- ( A e. Word { x e. ~P V | ( # ` x ) = 2 } -> A : ( 0 ..^ ( # ` A ) ) --> { x e. ~P V | ( # ` x ) = 2 } ) |
6 |
|
prprrab |
|- { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } |
7 |
|
2re |
|- 2 e. RR |
8 |
7
|
eqlei2 |
|- ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) |
9 |
8
|
a1i |
|- ( x e. ( ~P V \ { (/) } ) -> ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) ) |
10 |
9
|
ss2rabi |
|- { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
11 |
6 10
|
eqsstrri |
|- { x e. ~P V | ( # ` x ) = 2 } C_ { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
12 |
|
fss |
|- ( ( A : ( 0 ..^ ( # ` A ) ) --> { x e. ~P V | ( # ` x ) = 2 } /\ { x e. ~P V | ( # ` x ) = 2 } C_ { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) -> A : ( 0 ..^ ( # ` A ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
13 |
11 12
|
mpan2 |
|- ( A : ( 0 ..^ ( # ` A ) ) --> { x e. ~P V | ( # ` x ) = 2 } -> A : ( 0 ..^ ( # ` A ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
14 |
|
iswrdb |
|- ( A e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> A : ( 0 ..^ ( # ` A ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
15 |
13 14
|
sylibr |
|- ( A : ( 0 ..^ ( # ` A ) ) --> { x e. ~P V | ( # ` x ) = 2 } -> A e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
16 |
4 5 15
|
3syl |
|- ( ( A e. Word _V /\ B e. Word _V /\ E = ( A ++ B ) ) -> A e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |