| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v | ⊢ 𝑉  =  ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e | ⊢ 𝐸  =  〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉 | 
						
							| 3 |  | konigsberg.g | ⊢ 𝐺  =  〈 𝑉 ,  𝐸 〉 | 
						
							| 4 | 1 2 3 | konigsberglem5 | ⊢ 2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) | 
						
							| 5 |  | elpri | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 }  →  ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  0  ∨  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  2 ) ) | 
						
							| 6 |  | 2pos | ⊢ 0  <  2 | 
						
							| 7 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 8 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 9 | 7 8 | ltnsymi | ⊢ ( 0  <  2  →  ¬  2  <  0 ) | 
						
							| 10 | 6 9 | ax-mp | ⊢ ¬  2  <  0 | 
						
							| 11 |  | breq2 | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  0  →  ( 2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ↔  2  <  0 ) ) | 
						
							| 12 | 10 11 | mtbiri | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  0  →  ¬  2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 13 | 8 | ltnri | ⊢ ¬  2  <  2 | 
						
							| 14 |  | breq2 | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  2  →  ( 2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ↔  2  <  2 ) ) | 
						
							| 15 | 13 14 | mtbiri | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  2  →  ¬  2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 16 | 12 15 | jaoi | ⊢ ( ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  0  ∨  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  2 )  →  ¬  2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 17 | 5 16 | syl | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 }  →  ¬  2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 18 | 4 17 | mt2 | ⊢ ¬  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } | 
						
							| 19 | 1 2 3 | konigsbergumgr | ⊢ 𝐺  ∈  UMGraph | 
						
							| 20 |  | umgrupgr | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UPGraph ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ 𝐺  ∈  UPGraph | 
						
							| 22 | 3 | fveq2i | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 〈 𝑉 ,  𝐸 〉 ) | 
						
							| 23 | 1 | ovexi | ⊢ 𝑉  ∈  V | 
						
							| 24 |  | s7cli | ⊢ 〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉  ∈  Word  V | 
						
							| 25 | 2 24 | eqeltri | ⊢ 𝐸  ∈  Word  V | 
						
							| 26 |  | opvtxfv | ⊢ ( ( 𝑉  ∈  V  ∧  𝐸  ∈  Word  V )  →  ( Vtx ‘ 〈 𝑉 ,  𝐸 〉 )  =  𝑉 ) | 
						
							| 27 | 23 25 26 | mp2an | ⊢ ( Vtx ‘ 〈 𝑉 ,  𝐸 〉 )  =  𝑉 | 
						
							| 28 | 22 27 | eqtr2i | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 29 | 28 | eulerpath | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( EulerPaths ‘ 𝐺 )  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) | 
						
							| 30 | 21 29 | mpan | ⊢ ( ( EulerPaths ‘ 𝐺 )  ≠  ∅  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 } ) | 
						
							| 31 | 30 | necon1bi | ⊢ ( ¬  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  { 0 ,  2 }  →  ( EulerPaths ‘ 𝐺 )  =  ∅ ) | 
						
							| 32 | 18 31 | ax-mp | ⊢ ( EulerPaths ‘ 𝐺 )  =  ∅ |