Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
⊢ 𝑉 = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”〉 |
3 |
|
konigsberg.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
4 |
1 2 3
|
konigsberglem4 |
⊢ { 0 , 1 , 3 } ⊆ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } |
5 |
1
|
ovexi |
⊢ 𝑉 ∈ V |
6 |
5
|
rabex |
⊢ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V |
7 |
|
hashss |
⊢ ( ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V ∧ { 0 , 1 , 3 } ⊆ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) → ( ♯ ‘ { 0 , 1 , 3 } ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
8 |
6 7
|
mpan |
⊢ ( { 0 , 1 , 3 } ⊆ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } → ( ♯ ‘ { 0 , 1 , 3 } ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
9 |
|
0ne1 |
⊢ 0 ≠ 1 |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
|
1lt3 |
⊢ 1 < 3 |
12 |
10 11
|
ltneii |
⊢ 1 ≠ 3 |
13 |
|
3ne0 |
⊢ 3 ≠ 0 |
14 |
9 12 13
|
3pm3.2i |
⊢ ( 0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0 ) |
15 |
|
c0ex |
⊢ 0 ∈ V |
16 |
|
1ex |
⊢ 1 ∈ V |
17 |
|
3ex |
⊢ 3 ∈ V |
18 |
|
hashtpg |
⊢ ( ( 0 ∈ V ∧ 1 ∈ V ∧ 3 ∈ V ) → ( ( 0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0 ) ↔ ( ♯ ‘ { 0 , 1 , 3 } ) = 3 ) ) |
19 |
15 16 17 18
|
mp3an |
⊢ ( ( 0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0 ) ↔ ( ♯ ‘ { 0 , 1 , 3 } ) = 3 ) |
20 |
14 19
|
mpbi |
⊢ ( ♯ ‘ { 0 , 1 , 3 } ) = 3 |
21 |
20
|
breq1i |
⊢ ( ( ♯ ‘ { 0 , 1 , 3 } ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ↔ 3 ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
22 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
23 |
22
|
breq1i |
⊢ ( 3 ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ↔ ( 2 + 1 ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
24 |
|
2z |
⊢ 2 ∈ ℤ |
25 |
|
fzfi |
⊢ ( 0 ... 3 ) ∈ Fin |
26 |
1 25
|
eqeltri |
⊢ 𝑉 ∈ Fin |
27 |
|
rabfi |
⊢ ( 𝑉 ∈ Fin → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ Fin ) |
28 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℕ0 ) |
29 |
26 27 28
|
mp2b |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℕ0 |
30 |
29
|
nn0zi |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℤ |
31 |
|
zltp1le |
⊢ ( ( 2 ∈ ℤ ∧ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℤ ) → ( 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ↔ ( 2 + 1 ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) ) |
32 |
24 30 31
|
mp2an |
⊢ ( 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ↔ ( 2 + 1 ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
33 |
23 32
|
sylbb2 |
⊢ ( 3 ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) → 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
34 |
21 33
|
sylbi |
⊢ ( ( ♯ ‘ { 0 , 1 , 3 } ) ≤ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) → 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
35 |
4 8 34
|
mp2b |
⊢ 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) |