| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v | ⊢ 𝑉  =  ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e | ⊢ 𝐸  =  〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉 | 
						
							| 3 |  | konigsberg.g | ⊢ 𝐺  =  〈 𝑉 ,  𝐸 〉 | 
						
							| 4 | 1 2 3 | konigsberglem4 | ⊢ { 0 ,  1 ,  3 }  ⊆  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } | 
						
							| 5 | 1 | ovexi | ⊢ 𝑉  ∈  V | 
						
							| 6 | 5 | rabex | ⊢ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V | 
						
							| 7 |  | hashss | ⊢ ( ( { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V  ∧  { 0 ,  1 ,  3 }  ⊆  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  →  ( ♯ ‘ { 0 ,  1 ,  3 } )  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( { 0 ,  1 ,  3 }  ⊆  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  →  ( ♯ ‘ { 0 ,  1 ,  3 } )  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 9 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 10 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 11 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 12 | 10 11 | ltneii | ⊢ 1  ≠  3 | 
						
							| 13 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 14 | 9 12 13 | 3pm3.2i | ⊢ ( 0  ≠  1  ∧  1  ≠  3  ∧  3  ≠  0 ) | 
						
							| 15 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 16 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 17 |  | 3ex | ⊢ 3  ∈  V | 
						
							| 18 |  | hashtpg | ⊢ ( ( 0  ∈  V  ∧  1  ∈  V  ∧  3  ∈  V )  →  ( ( 0  ≠  1  ∧  1  ≠  3  ∧  3  ≠  0 )  ↔  ( ♯ ‘ { 0 ,  1 ,  3 } )  =  3 ) ) | 
						
							| 19 | 15 16 17 18 | mp3an | ⊢ ( ( 0  ≠  1  ∧  1  ≠  3  ∧  3  ≠  0 )  ↔  ( ♯ ‘ { 0 ,  1 ,  3 } )  =  3 ) | 
						
							| 20 | 14 19 | mpbi | ⊢ ( ♯ ‘ { 0 ,  1 ,  3 } )  =  3 | 
						
							| 21 | 20 | breq1i | ⊢ ( ( ♯ ‘ { 0 ,  1 ,  3 } )  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ↔  3  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 22 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 23 | 22 | breq1i | ⊢ ( 3  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ↔  ( 2  +  1 )  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 24 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 25 |  | fzfi | ⊢ ( 0 ... 3 )  ∈  Fin | 
						
							| 26 | 1 25 | eqeltri | ⊢ 𝑉  ∈  Fin | 
						
							| 27 |  | rabfi | ⊢ ( 𝑉  ∈  Fin  →  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  Fin ) | 
						
							| 28 |  | hashcl | ⊢ ( { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  ℕ0 ) | 
						
							| 29 | 26 27 28 | mp2b | ⊢ ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  ℕ0 | 
						
							| 30 | 29 | nn0zi | ⊢ ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  ℤ | 
						
							| 31 |  | zltp1le | ⊢ ( ( 2  ∈  ℤ  ∧  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  ℤ )  →  ( 2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ↔  ( 2  +  1 )  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) ) | 
						
							| 32 | 24 30 31 | mp2an | ⊢ ( 2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ↔  ( 2  +  1 )  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 33 | 23 32 | sylbb2 | ⊢ ( 3  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  →  2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 34 | 21 33 | sylbi | ⊢ ( ( ♯ ‘ { 0 ,  1 ,  3 } )  ≤  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  →  2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 35 | 4 8 34 | mp2b | ⊢ 2  <  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) |