Metamath Proof Explorer


Theorem konigsberglem5

Description: Lemma 5 for konigsberg : The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V = 0 3
konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
konigsberg.g G = V E
Assertion konigsberglem5 2 < x V | ¬ 2 VtxDeg G x

Proof

Step Hyp Ref Expression
1 konigsberg.v V = 0 3
2 konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
3 konigsberg.g G = V E
4 1 2 3 konigsberglem4 0 1 3 x V | ¬ 2 VtxDeg G x
5 1 ovexi V V
6 5 rabex x V | ¬ 2 VtxDeg G x V
7 hashss x V | ¬ 2 VtxDeg G x V 0 1 3 x V | ¬ 2 VtxDeg G x 0 1 3 x V | ¬ 2 VtxDeg G x
8 6 7 mpan 0 1 3 x V | ¬ 2 VtxDeg G x 0 1 3 x V | ¬ 2 VtxDeg G x
9 0ne1 0 1
10 1re 1
11 1lt3 1 < 3
12 10 11 ltneii 1 3
13 3ne0 3 0
14 9 12 13 3pm3.2i 0 1 1 3 3 0
15 c0ex 0 V
16 1ex 1 V
17 3ex 3 V
18 hashtpg 0 V 1 V 3 V 0 1 1 3 3 0 0 1 3 = 3
19 15 16 17 18 mp3an 0 1 1 3 3 0 0 1 3 = 3
20 14 19 mpbi 0 1 3 = 3
21 20 breq1i 0 1 3 x V | ¬ 2 VtxDeg G x 3 x V | ¬ 2 VtxDeg G x
22 df-3 3 = 2 + 1
23 22 breq1i 3 x V | ¬ 2 VtxDeg G x 2 + 1 x V | ¬ 2 VtxDeg G x
24 2z 2
25 fzfi 0 3 Fin
26 1 25 eqeltri V Fin
27 rabfi V Fin x V | ¬ 2 VtxDeg G x Fin
28 hashcl x V | ¬ 2 VtxDeg G x Fin x V | ¬ 2 VtxDeg G x 0
29 26 27 28 mp2b x V | ¬ 2 VtxDeg G x 0
30 29 nn0zi x V | ¬ 2 VtxDeg G x
31 zltp1le 2 x V | ¬ 2 VtxDeg G x 2 < x V | ¬ 2 VtxDeg G x 2 + 1 x V | ¬ 2 VtxDeg G x
32 24 30 31 mp2an 2 < x V | ¬ 2 VtxDeg G x 2 + 1 x V | ¬ 2 VtxDeg G x
33 23 32 sylbb2 3 x V | ¬ 2 VtxDeg G x 2 < x V | ¬ 2 VtxDeg G x
34 21 33 sylbi 0 1 3 x V | ¬ 2 VtxDeg G x 2 < x V | ¬ 2 VtxDeg G x
35 4 8 34 mp2b 2 < x V | ¬ 2 VtxDeg G x