Metamath Proof Explorer


Theorem konigsberglem4

Description: Lemma 4 for konigsberg : Vertices 0 , 1 , 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V = 0 3
konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
konigsberg.g G = V E
Assertion konigsberglem4 0 1 3 x V | ¬ 2 VtxDeg G x

Proof

Step Hyp Ref Expression
1 konigsberg.v V = 0 3
2 konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
3 konigsberg.g G = V E
4 3nn0 3 0
5 0elfz 3 0 0 0 3
6 4 5 ax-mp 0 0 3
7 6 1 eleqtrri 0 V
8 n2dvds3 ¬ 2 3
9 1 2 3 konigsberglem1 VtxDeg G 0 = 3
10 9 breq2i 2 VtxDeg G 0 2 3
11 8 10 mtbir ¬ 2 VtxDeg G 0
12 fveq2 x = 0 VtxDeg G x = VtxDeg G 0
13 12 breq2d x = 0 2 VtxDeg G x 2 VtxDeg G 0
14 13 notbid x = 0 ¬ 2 VtxDeg G x ¬ 2 VtxDeg G 0
15 14 elrab 0 x V | ¬ 2 VtxDeg G x 0 V ¬ 2 VtxDeg G 0
16 7 11 15 mpbir2an 0 x V | ¬ 2 VtxDeg G x
17 1nn0 1 0
18 1le3 1 3
19 elfz2nn0 1 0 3 1 0 3 0 1 3
20 17 4 18 19 mpbir3an 1 0 3
21 20 1 eleqtrri 1 V
22 1 2 3 konigsberglem2 VtxDeg G 1 = 3
23 22 breq2i 2 VtxDeg G 1 2 3
24 8 23 mtbir ¬ 2 VtxDeg G 1
25 fveq2 x = 1 VtxDeg G x = VtxDeg G 1
26 25 breq2d x = 1 2 VtxDeg G x 2 VtxDeg G 1
27 26 notbid x = 1 ¬ 2 VtxDeg G x ¬ 2 VtxDeg G 1
28 27 elrab 1 x V | ¬ 2 VtxDeg G x 1 V ¬ 2 VtxDeg G 1
29 21 24 28 mpbir2an 1 x V | ¬ 2 VtxDeg G x
30 3re 3
31 30 leidi 3 3
32 elfz2nn0 3 0 3 3 0 3 0 3 3
33 4 4 31 32 mpbir3an 3 0 3
34 33 1 eleqtrri 3 V
35 1 2 3 konigsberglem3 VtxDeg G 3 = 3
36 35 breq2i 2 VtxDeg G 3 2 3
37 8 36 mtbir ¬ 2 VtxDeg G 3
38 fveq2 x = 3 VtxDeg G x = VtxDeg G 3
39 38 breq2d x = 3 2 VtxDeg G x 2 VtxDeg G 3
40 39 notbid x = 3 ¬ 2 VtxDeg G x ¬ 2 VtxDeg G 3
41 40 elrab 3 x V | ¬ 2 VtxDeg G x 3 V ¬ 2 VtxDeg G 3
42 34 37 41 mpbir2an 3 x V | ¬ 2 VtxDeg G x
43 16 29 42 3pm3.2i 0 x V | ¬ 2 VtxDeg G x 1 x V | ¬ 2 VtxDeg G x 3 x V | ¬ 2 VtxDeg G x
44 c0ex 0 V
45 1ex 1 V
46 3ex 3 V
47 44 45 46 tpss 0 x V | ¬ 2 VtxDeg G x 1 x V | ¬ 2 VtxDeg G x 3 x V | ¬ 2 VtxDeg G x 0 1 3 x V | ¬ 2 VtxDeg G x
48 43 47 mpbi 0 1 3 x V | ¬ 2 VtxDeg G x