| Step |
Hyp |
Ref |
Expression |
| 1 |
|
konigsberg.v |
|- V = ( 0 ... 3 ) |
| 2 |
|
konigsberg.e |
|- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
| 3 |
|
konigsberg.g |
|- G = <. V , E >. |
| 4 |
|
3nn0 |
|- 3 e. NN0 |
| 5 |
|
0elfz |
|- ( 3 e. NN0 -> 0 e. ( 0 ... 3 ) ) |
| 6 |
4 5
|
ax-mp |
|- 0 e. ( 0 ... 3 ) |
| 7 |
6 1
|
eleqtrri |
|- 0 e. V |
| 8 |
|
n2dvds3 |
|- -. 2 || 3 |
| 9 |
1 2 3
|
konigsberglem1 |
|- ( ( VtxDeg ` G ) ` 0 ) = 3 |
| 10 |
9
|
breq2i |
|- ( 2 || ( ( VtxDeg ` G ) ` 0 ) <-> 2 || 3 ) |
| 11 |
8 10
|
mtbir |
|- -. 2 || ( ( VtxDeg ` G ) ` 0 ) |
| 12 |
|
fveq2 |
|- ( x = 0 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 0 ) ) |
| 13 |
12
|
breq2d |
|- ( x = 0 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) |
| 14 |
13
|
notbid |
|- ( x = 0 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) |
| 15 |
14
|
elrab |
|- ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 0 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) |
| 16 |
7 11 15
|
mpbir2an |
|- 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |
| 17 |
|
1nn0 |
|- 1 e. NN0 |
| 18 |
|
1le3 |
|- 1 <_ 3 |
| 19 |
|
elfz2nn0 |
|- ( 1 e. ( 0 ... 3 ) <-> ( 1 e. NN0 /\ 3 e. NN0 /\ 1 <_ 3 ) ) |
| 20 |
17 4 18 19
|
mpbir3an |
|- 1 e. ( 0 ... 3 ) |
| 21 |
20 1
|
eleqtrri |
|- 1 e. V |
| 22 |
1 2 3
|
konigsberglem2 |
|- ( ( VtxDeg ` G ) ` 1 ) = 3 |
| 23 |
22
|
breq2i |
|- ( 2 || ( ( VtxDeg ` G ) ` 1 ) <-> 2 || 3 ) |
| 24 |
8 23
|
mtbir |
|- -. 2 || ( ( VtxDeg ` G ) ` 1 ) |
| 25 |
|
fveq2 |
|- ( x = 1 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 1 ) ) |
| 26 |
25
|
breq2d |
|- ( x = 1 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) |
| 27 |
26
|
notbid |
|- ( x = 1 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) |
| 28 |
27
|
elrab |
|- ( 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 1 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) |
| 29 |
21 24 28
|
mpbir2an |
|- 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |
| 30 |
|
3re |
|- 3 e. RR |
| 31 |
30
|
leidi |
|- 3 <_ 3 |
| 32 |
|
elfz2nn0 |
|- ( 3 e. ( 0 ... 3 ) <-> ( 3 e. NN0 /\ 3 e. NN0 /\ 3 <_ 3 ) ) |
| 33 |
4 4 31 32
|
mpbir3an |
|- 3 e. ( 0 ... 3 ) |
| 34 |
33 1
|
eleqtrri |
|- 3 e. V |
| 35 |
1 2 3
|
konigsberglem3 |
|- ( ( VtxDeg ` G ) ` 3 ) = 3 |
| 36 |
35
|
breq2i |
|- ( 2 || ( ( VtxDeg ` G ) ` 3 ) <-> 2 || 3 ) |
| 37 |
8 36
|
mtbir |
|- -. 2 || ( ( VtxDeg ` G ) ` 3 ) |
| 38 |
|
fveq2 |
|- ( x = 3 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 3 ) ) |
| 39 |
38
|
breq2d |
|- ( x = 3 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) |
| 40 |
39
|
notbid |
|- ( x = 3 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) |
| 41 |
40
|
elrab |
|- ( 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 3 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) |
| 42 |
34 37 41
|
mpbir2an |
|- 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |
| 43 |
16 29 42
|
3pm3.2i |
|- ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |
| 44 |
|
c0ex |
|- 0 e. _V |
| 45 |
|
1ex |
|- 1 e. _V |
| 46 |
|
3ex |
|- 3 e. _V |
| 47 |
44 45 46
|
tpss |
|- ( ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |
| 48 |
43 47
|
mpbi |
|- { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |