| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v |  |-  V = ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e |  |-  E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> | 
						
							| 3 |  | konigsberg.g |  |-  G = <. V , E >. | 
						
							| 4 | 1 2 3 | konigsberglem4 |  |-  { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } | 
						
							| 5 | 1 | ovexi |  |-  V e. _V | 
						
							| 6 | 5 | rabex |  |-  { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } e. _V | 
						
							| 7 |  | hashss |  |-  ( ( { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } e. _V /\ { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) -> ( # ` { 0 , 1 , 3 } ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 8 | 6 7 | mpan |  |-  ( { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } -> ( # ` { 0 , 1 , 3 } ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 9 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 10 |  | 1re |  |-  1 e. RR | 
						
							| 11 |  | 1lt3 |  |-  1 < 3 | 
						
							| 12 | 10 11 | ltneii |  |-  1 =/= 3 | 
						
							| 13 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 14 | 9 12 13 | 3pm3.2i |  |-  ( 0 =/= 1 /\ 1 =/= 3 /\ 3 =/= 0 ) | 
						
							| 15 |  | c0ex |  |-  0 e. _V | 
						
							| 16 |  | 1ex |  |-  1 e. _V | 
						
							| 17 |  | 3ex |  |-  3 e. _V | 
						
							| 18 |  | hashtpg |  |-  ( ( 0 e. _V /\ 1 e. _V /\ 3 e. _V ) -> ( ( 0 =/= 1 /\ 1 =/= 3 /\ 3 =/= 0 ) <-> ( # ` { 0 , 1 , 3 } ) = 3 ) ) | 
						
							| 19 | 15 16 17 18 | mp3an |  |-  ( ( 0 =/= 1 /\ 1 =/= 3 /\ 3 =/= 0 ) <-> ( # ` { 0 , 1 , 3 } ) = 3 ) | 
						
							| 20 | 14 19 | mpbi |  |-  ( # ` { 0 , 1 , 3 } ) = 3 | 
						
							| 21 | 20 | breq1i |  |-  ( ( # ` { 0 , 1 , 3 } ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> 3 <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 22 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 23 | 22 | breq1i |  |-  ( 3 <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> ( 2 + 1 ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 24 |  | 2z |  |-  2 e. ZZ | 
						
							| 25 |  | fzfi |  |-  ( 0 ... 3 ) e. Fin | 
						
							| 26 | 1 25 | eqeltri |  |-  V e. Fin | 
						
							| 27 |  | rabfi |  |-  ( V e. Fin -> { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } e. Fin ) | 
						
							| 28 |  | hashcl |  |-  ( { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } e. Fin -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. NN0 ) | 
						
							| 29 | 26 27 28 | mp2b |  |-  ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. NN0 | 
						
							| 30 | 29 | nn0zi |  |-  ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. ZZ | 
						
							| 31 |  | zltp1le |  |-  ( ( 2 e. ZZ /\ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. ZZ ) -> ( 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> ( 2 + 1 ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) ) | 
						
							| 32 | 24 30 31 | mp2an |  |-  ( 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> ( 2 + 1 ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 33 | 23 32 | sylbb2 |  |-  ( 3 <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) -> 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 34 | 21 33 | sylbi |  |-  ( ( # ` { 0 , 1 , 3 } ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) -> 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 35 | 4 8 34 | mp2b |  |-  2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |