Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
|- V = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
|- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
3 |
|
konigsberg.g |
|- G = <. V , E >. |
4 |
1 2 3
|
konigsberglem4 |
|- { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |
5 |
1
|
ovexi |
|- V e. _V |
6 |
5
|
rabex |
|- { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } e. _V |
7 |
|
hashss |
|- ( ( { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } e. _V /\ { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) -> ( # ` { 0 , 1 , 3 } ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
8 |
6 7
|
mpan |
|- ( { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } -> ( # ` { 0 , 1 , 3 } ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
9 |
|
0ne1 |
|- 0 =/= 1 |
10 |
|
1re |
|- 1 e. RR |
11 |
|
1lt3 |
|- 1 < 3 |
12 |
10 11
|
ltneii |
|- 1 =/= 3 |
13 |
|
3ne0 |
|- 3 =/= 0 |
14 |
9 12 13
|
3pm3.2i |
|- ( 0 =/= 1 /\ 1 =/= 3 /\ 3 =/= 0 ) |
15 |
|
c0ex |
|- 0 e. _V |
16 |
|
1ex |
|- 1 e. _V |
17 |
|
3ex |
|- 3 e. _V |
18 |
|
hashtpg |
|- ( ( 0 e. _V /\ 1 e. _V /\ 3 e. _V ) -> ( ( 0 =/= 1 /\ 1 =/= 3 /\ 3 =/= 0 ) <-> ( # ` { 0 , 1 , 3 } ) = 3 ) ) |
19 |
15 16 17 18
|
mp3an |
|- ( ( 0 =/= 1 /\ 1 =/= 3 /\ 3 =/= 0 ) <-> ( # ` { 0 , 1 , 3 } ) = 3 ) |
20 |
14 19
|
mpbi |
|- ( # ` { 0 , 1 , 3 } ) = 3 |
21 |
20
|
breq1i |
|- ( ( # ` { 0 , 1 , 3 } ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> 3 <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
22 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
23 |
22
|
breq1i |
|- ( 3 <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> ( 2 + 1 ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
24 |
|
2z |
|- 2 e. ZZ |
25 |
|
fzfi |
|- ( 0 ... 3 ) e. Fin |
26 |
1 25
|
eqeltri |
|- V e. Fin |
27 |
|
rabfi |
|- ( V e. Fin -> { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } e. Fin ) |
28 |
|
hashcl |
|- ( { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } e. Fin -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. NN0 ) |
29 |
26 27 28
|
mp2b |
|- ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. NN0 |
30 |
29
|
nn0zi |
|- ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. ZZ |
31 |
|
zltp1le |
|- ( ( 2 e. ZZ /\ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. ZZ ) -> ( 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> ( 2 + 1 ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) ) |
32 |
24 30 31
|
mp2an |
|- ( 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> ( 2 + 1 ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
33 |
23 32
|
sylbb2 |
|- ( 3 <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) -> 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
34 |
21 33
|
sylbi |
|- ( ( # ` { 0 , 1 , 3 } ) <_ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) -> 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
35 |
4 8 34
|
mp2b |
|- 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |