| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v | ⊢ 𝑉  =  ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e | ⊢ 𝐸  =  〈“ { 0 ,  1 } { 0 ,  2 } { 0 ,  3 } { 1 ,  2 } { 1 ,  2 } { 2 ,  3 } { 2 ,  3 } ”〉 | 
						
							| 3 |  | konigsberg.g | ⊢ 𝐺  =  〈 𝑉 ,  𝐸 〉 | 
						
							| 4 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 5 |  | 0elfz | ⊢ ( 3  ∈  ℕ0  →  0  ∈  ( 0 ... 3 ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ 0  ∈  ( 0 ... 3 ) | 
						
							| 7 | 6 1 | eleqtrri | ⊢ 0  ∈  𝑉 | 
						
							| 8 |  | n2dvds3 | ⊢ ¬  2  ∥  3 | 
						
							| 9 | 1 2 3 | konigsberglem1 | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 0 )  =  3 | 
						
							| 10 | 9 | breq2i | ⊢ ( 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 0 )  ↔  2  ∥  3 ) | 
						
							| 11 | 8 10 | mtbir | ⊢ ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 0 ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 0 ) ) | 
						
							| 13 | 12 | breq2d | ⊢ ( 𝑥  =  0  →  ( 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  ↔  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 0 ) ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( 𝑥  =  0  →  ( ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  ↔  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 0 ) ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 0  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ↔  ( 0  ∈  𝑉  ∧  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 0 ) ) ) | 
						
							| 16 | 7 11 15 | mpbir2an | ⊢ 0  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } | 
						
							| 17 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 18 |  | 1le3 | ⊢ 1  ≤  3 | 
						
							| 19 |  | elfz2nn0 | ⊢ ( 1  ∈  ( 0 ... 3 )  ↔  ( 1  ∈  ℕ0  ∧  3  ∈  ℕ0  ∧  1  ≤  3 ) ) | 
						
							| 20 | 17 4 18 19 | mpbir3an | ⊢ 1  ∈  ( 0 ... 3 ) | 
						
							| 21 | 20 1 | eleqtrri | ⊢ 1  ∈  𝑉 | 
						
							| 22 | 1 2 3 | konigsberglem2 | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 1 )  =  3 | 
						
							| 23 | 22 | breq2i | ⊢ ( 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 1 )  ↔  2  ∥  3 ) | 
						
							| 24 | 8 23 | mtbir | ⊢ ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 1 ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 1 ) ) | 
						
							| 26 | 25 | breq2d | ⊢ ( 𝑥  =  1  →  ( 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  ↔  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 1 ) ) ) | 
						
							| 27 | 26 | notbid | ⊢ ( 𝑥  =  1  →  ( ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  ↔  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 1 ) ) ) | 
						
							| 28 | 27 | elrab | ⊢ ( 1  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ↔  ( 1  ∈  𝑉  ∧  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 1 ) ) ) | 
						
							| 29 | 21 24 28 | mpbir2an | ⊢ 1  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } | 
						
							| 30 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 31 | 30 | leidi | ⊢ 3  ≤  3 | 
						
							| 32 |  | elfz2nn0 | ⊢ ( 3  ∈  ( 0 ... 3 )  ↔  ( 3  ∈  ℕ0  ∧  3  ∈  ℕ0  ∧  3  ≤  3 ) ) | 
						
							| 33 | 4 4 31 32 | mpbir3an | ⊢ 3  ∈  ( 0 ... 3 ) | 
						
							| 34 | 33 1 | eleqtrri | ⊢ 3  ∈  𝑉 | 
						
							| 35 | 1 2 3 | konigsberglem3 | ⊢ ( ( VtxDeg ‘ 𝐺 ) ‘ 3 )  =  3 | 
						
							| 36 | 35 | breq2i | ⊢ ( 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 3 )  ↔  2  ∥  3 ) | 
						
							| 37 | 8 36 | mtbir | ⊢ ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 3 ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑥  =  3  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 3 ) ) | 
						
							| 39 | 38 | breq2d | ⊢ ( 𝑥  =  3  →  ( 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  ↔  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 3 ) ) ) | 
						
							| 40 | 39 | notbid | ⊢ ( 𝑥  =  3  →  ( ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  ↔  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 3 ) ) ) | 
						
							| 41 | 40 | elrab | ⊢ ( 3  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ↔  ( 3  ∈  𝑉  ∧  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 3 ) ) ) | 
						
							| 42 | 34 37 41 | mpbir2an | ⊢ 3  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } | 
						
							| 43 | 16 29 42 | 3pm3.2i | ⊢ ( 0  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ∧  1  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ∧  3  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) | 
						
							| 44 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 45 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 46 |  | 3ex | ⊢ 3  ∈  V | 
						
							| 47 | 44 45 46 | tpss | ⊢ ( ( 0  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ∧  1  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  ∧  3  ∈  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } )  ↔  { 0 ,  1 ,  3 }  ⊆  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) | 
						
							| 48 | 43 47 | mpbi | ⊢ { 0 ,  1 ,  3 }  ⊆  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } |