Metamath Proof Explorer


Theorem konigsberglem2

Description: Lemma 2 for konigsberg : Vertex 1 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 4-Mar-2021)

Ref Expression
Hypotheses konigsberg.v V=03
konigsberg.e E=⟨“01020312122323”⟩
konigsberg.g G=VE
Assertion konigsberglem2 VtxDegG1=3

Proof

Step Hyp Ref Expression
1 konigsberg.v V=03
2 konigsberg.e E=⟨“01020312122323”⟩
3 konigsberg.g G=VE
4 ovex 03V
5 s6cli ⟨“010203121223”⟩WordV
6 5 elexi ⟨“010203121223”⟩V
7 4 6 opvtxfvi Vtx03⟨“010203121223”⟩=03
8 7 eqcomi 03=Vtx03⟨“010203121223”⟩
9 1nn0 10
10 3nn0 30
11 1le3 13
12 elfz2nn0 103103013
13 9 10 11 12 mpbir3an 103
14 4 6 opiedgfvi iEdg03⟨“010203121223”⟩=⟨“010203121223”⟩
15 14 eqcomi ⟨“010203121223”⟩=iEdg03⟨“010203121223”⟩
16 s1cli ⟨“23”⟩WordV
17 df-s7 ⟨“01020312122323”⟩=⟨“010203121223”⟩++⟨“23”⟩
18 eqid 03=03
19 eqid ⟨“01020312122323”⟩=⟨“01020312122323”⟩
20 eqid 03⟨“01020312122323”⟩=03⟨“01020312122323”⟩
21 18 19 20 konigsbergssiedgw ⟨“010203121223”⟩WordV⟨“23”⟩WordV⟨“01020312122323”⟩=⟨“010203121223”⟩++⟨“23”⟩⟨“010203121223”⟩Wordx𝒫03|x2
22 5 16 17 21 mp3an ⟨“010203121223”⟩Wordx𝒫03|x2
23 s5cli ⟨“0102031212”⟩WordV
24 23 elexi ⟨“0102031212”⟩V
25 4 24 opvtxfvi Vtx03⟨“0102031212”⟩=03
26 25 eqcomi 03=Vtx03⟨“0102031212”⟩
27 4 24 opiedgfvi iEdg03⟨“0102031212”⟩=⟨“0102031212”⟩
28 27 eqcomi ⟨“0102031212”⟩=iEdg03⟨“0102031212”⟩
29 s2cli ⟨“2323”⟩WordV
30 s5s2 ⟨“01020312122323”⟩=⟨“0102031212”⟩++⟨“2323”⟩
31 18 19 20 konigsbergssiedgw ⟨“0102031212”⟩WordV⟨“2323”⟩WordV⟨“01020312122323”⟩=⟨“0102031212”⟩++⟨“2323”⟩⟨“0102031212”⟩Wordx𝒫03|x2
32 23 29 30 31 mp3an ⟨“0102031212”⟩Wordx𝒫03|x2
33 s4cli ⟨“01020312”⟩WordV
34 33 elexi ⟨“01020312”⟩V
35 4 34 opvtxfvi Vtx03⟨“01020312”⟩=03
36 35 eqcomi 03=Vtx03⟨“01020312”⟩
37 4 34 opiedgfvi iEdg03⟨“01020312”⟩=⟨“01020312”⟩
38 37 eqcomi ⟨“01020312”⟩=iEdg03⟨“01020312”⟩
39 s3cli ⟨“122323”⟩WordV
40 s4s3 ⟨“01020312122323”⟩=⟨“01020312”⟩++⟨“122323”⟩
41 18 19 20 konigsbergssiedgw ⟨“01020312”⟩WordV⟨“122323”⟩WordV⟨“01020312122323”⟩=⟨“01020312”⟩++⟨“122323”⟩⟨“01020312”⟩Wordx𝒫03|x2
42 33 39 40 41 mp3an ⟨“01020312”⟩Wordx𝒫03|x2
43 s3cli ⟨“010203”⟩WordV
44 43 elexi ⟨“010203”⟩V
45 4 44 opvtxfvi Vtx03⟨“010203”⟩=03
46 45 eqcomi 03=Vtx03⟨“010203”⟩
47 4 44 opiedgfvi iEdg03⟨“010203”⟩=⟨“010203”⟩
48 47 eqcomi ⟨“010203”⟩=iEdg03⟨“010203”⟩
49 s4cli ⟨“12122323”⟩WordV
50 s3s4 ⟨“01020312122323”⟩=⟨“010203”⟩++⟨“12122323”⟩
51 18 19 20 konigsbergssiedgw ⟨“010203”⟩WordV⟨“12122323”⟩WordV⟨“01020312122323”⟩=⟨“010203”⟩++⟨“12122323”⟩⟨“010203”⟩Wordx𝒫03|x2
52 43 49 50 51 mp3an ⟨“010203”⟩Wordx𝒫03|x2
53 s2cli ⟨“0102”⟩WordV
54 53 elexi ⟨“0102”⟩V
55 4 54 opvtxfvi Vtx03⟨“0102”⟩=03
56 55 eqcomi 03=Vtx03⟨“0102”⟩
57 4 54 opiedgfvi iEdg03⟨“0102”⟩=⟨“0102”⟩
58 57 eqcomi ⟨“0102”⟩=iEdg03⟨“0102”⟩
59 s5cli ⟨“0312122323”⟩WordV
60 s2s5 ⟨“01020312122323”⟩=⟨“0102”⟩++⟨“0312122323”⟩
61 18 19 20 konigsbergssiedgw ⟨“0102”⟩WordV⟨“0312122323”⟩WordV⟨“01020312122323”⟩=⟨“0102”⟩++⟨“0312122323”⟩⟨“0102”⟩Wordx𝒫03|x2
62 53 59 60 61 mp3an ⟨“0102”⟩Wordx𝒫03|x2
63 s1cli ⟨“01”⟩WordV
64 63 elexi ⟨“01”⟩V
65 4 64 opvtxfvi Vtx03⟨“01”⟩=03
66 65 eqcomi 03=Vtx03⟨“01”⟩
67 4 64 opiedgfvi iEdg03⟨“01”⟩=⟨“01”⟩
68 67 eqcomi ⟨“01”⟩=iEdg03⟨“01”⟩
69 s6cli ⟨“020312122323”⟩WordV
70 s1s6 ⟨“01020312122323”⟩=⟨“01”⟩++⟨“020312122323”⟩
71 18 19 20 konigsbergssiedgw ⟨“01”⟩WordV⟨“020312122323”⟩WordV⟨“01020312122323”⟩=⟨“01”⟩++⟨“020312122323”⟩⟨“01”⟩Wordx𝒫03|x2
72 63 69 70 71 mp3an ⟨“01”⟩Wordx𝒫03|x2
73 0ex V
74 4 73 opvtxfvi Vtx03=03
75 74 eqcomi 03=Vtx03
76 4 73 opiedgfvi iEdg03=
77 76 eqcomi =iEdg03
78 wrd0 Wordx𝒫03|x2
79 eqid =
80 75 77 vtxdg0e 103=VtxDeg031=0
81 13 79 80 mp2an VtxDeg031=0
82 0elfz 30003
83 10 82 ax-mp 003
84 0ne1 01
85 s0s1 ⟨“01”⟩=++⟨“01”⟩
86 67 85 eqtri iEdg03⟨“01”⟩=++⟨“01”⟩
87 75 13 77 78 81 65 83 84 86 vdegp1ci VtxDeg03⟨“01”⟩1=0+1
88 0p1e1 0+1=1
89 87 88 eqtri VtxDeg03⟨“01”⟩1=1
90 2nn0 20
91 2re 2
92 3re 3
93 2lt3 2<3
94 91 92 93 ltleii 23
95 elfz2nn0 203203023
96 90 10 94 95 mpbir3an 203
97 1ne2 12
98 97 necomi 21
99 df-s2 ⟨“0102”⟩=⟨“01”⟩++⟨“02”⟩
100 57 99 eqtri iEdg03⟨“0102”⟩=⟨“01”⟩++⟨“02”⟩
101 66 13 68 72 89 55 83 84 96 98 100 vdegp1ai VtxDeg03⟨“0102”⟩1=1
102 nn0fz0 30303
103 10 102 mpbi 303
104 1re 1
105 1lt3 1<3
106 104 105 gtneii 31
107 df-s3 ⟨“010203”⟩=⟨“0102”⟩++⟨“03”⟩
108 47 107 eqtri iEdg03⟨“010203”⟩=⟨“0102”⟩++⟨“03”⟩
109 56 13 58 62 101 45 83 84 103 106 108 vdegp1ai VtxDeg03⟨“010203”⟩1=1
110 df-s4 ⟨“01020312”⟩=⟨“010203”⟩++⟨“12”⟩
111 37 110 eqtri iEdg03⟨“01020312”⟩=⟨“010203”⟩++⟨“12”⟩
112 46 13 48 52 109 35 96 98 111 vdegp1bi VtxDeg03⟨“01020312”⟩1=1+1
113 1p1e2 1+1=2
114 112 113 eqtri VtxDeg03⟨“01020312”⟩1=2
115 df-s5 ⟨“0102031212”⟩=⟨“01020312”⟩++⟨“12”⟩
116 27 115 eqtri iEdg03⟨“0102031212”⟩=⟨“01020312”⟩++⟨“12”⟩
117 36 13 38 42 114 25 96 98 116 vdegp1bi VtxDeg03⟨“0102031212”⟩1=2+1
118 2p1e3 2+1=3
119 117 118 eqtri VtxDeg03⟨“0102031212”⟩1=3
120 df-s6 ⟨“010203121223”⟩=⟨“0102031212”⟩++⟨“23”⟩
121 14 120 eqtri iEdg03⟨“010203121223”⟩=⟨“0102031212”⟩++⟨“23”⟩
122 26 13 28 32 119 7 96 98 103 106 121 vdegp1ai VtxDeg03⟨“010203121223”⟩1=3
123 1 2 3 konigsbergvtx VtxG=03
124 1 2 3 konigsbergiedg iEdgG=⟨“01020312122323”⟩
125 124 17 eqtri iEdgG=⟨“010203121223”⟩++⟨“23”⟩
126 8 13 15 22 122 123 96 98 103 106 125 vdegp1ai VtxDegG1=3