| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | isumgr | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝐺  ∈  UMGraph  ↔  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 4 |  | id | ⊢ ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 5 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 6 | 5 | leidi | ⊢ 2  ≤  2 | 
						
							| 7 | 6 | a1i | ⊢ ( ( ♯ ‘ 𝑥 )  =  2  →  2  ≤  2 ) | 
						
							| 8 |  | breq1 | ⊢ ( ( ♯ ‘ 𝑥 )  =  2  →  ( ( ♯ ‘ 𝑥 )  ≤  2  ↔  2  ≤  2 ) ) | 
						
							| 9 | 7 8 | mpbird | ⊢ ( ( ♯ ‘ 𝑥 )  =  2  →  ( ♯ ‘ 𝑥 )  ≤  2 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  →  ( ( ♯ ‘ 𝑥 )  =  2  →  ( ♯ ‘ 𝑥 )  ≤  2 ) ) | 
						
							| 11 | 10 | ss2rabi | ⊢ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ⊆  { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } | 
						
							| 12 | 11 | a1i | ⊢ ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ⊆  { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 13 | 4 12 | fssd | ⊢ ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 14 | 3 13 | biimtrdi | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝐺  ∈  UMGraph  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 15 | 14 | pm2.43i | ⊢ ( 𝐺  ∈  UMGraph  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 16 | 1 2 | isupgr | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝐺  ∈  UPGraph  ↔  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) ) | 
						
							| 17 | 15 16 | mpbird | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UPGraph ) |