Metamath Proof Explorer


Theorem umgrupgr

Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020)

Ref Expression
Assertion umgrupgr GUMGraphGUPGraph

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 isumgr GUMGraphGUMGraphiEdgG:domiEdgGx𝒫VtxG|x=2
4 id iEdgG:domiEdgGx𝒫VtxG|x=2iEdgG:domiEdgGx𝒫VtxG|x=2
5 2re 2
6 5 leidi 22
7 6 a1i x=222
8 breq1 x=2x222
9 7 8 mpbird x=2x2
10 9 a1i x𝒫VtxGx=2x2
11 10 ss2rabi x𝒫VtxG|x=2x𝒫VtxG|x2
12 11 a1i iEdgG:domiEdgGx𝒫VtxG|x=2x𝒫VtxG|x=2x𝒫VtxG|x2
13 4 12 fssd iEdgG:domiEdgGx𝒫VtxG|x=2iEdgG:domiEdgGx𝒫VtxG|x2
14 3 13 syl6bi GUMGraphGUMGraphiEdgG:domiEdgGx𝒫VtxG|x2
15 14 pm2.43i GUMGraphiEdgG:domiEdgGx𝒫VtxG|x2
16 1 2 isupgr GUMGraphGUPGraphiEdgG:domiEdgGx𝒫VtxG|x2
17 15 16 mpbird GUMGraphGUPGraph