| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nel |
|- ( 0 e/ Z <-> -. 0 e. Z ) |
| 2 |
|
lcmfn0cl |
|- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. NN ) |
| 3 |
2
|
nnne0d |
|- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) =/= 0 ) |
| 4 |
3
|
3expia |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( 0 e/ Z -> ( _lcm ` Z ) =/= 0 ) ) |
| 5 |
1 4
|
biimtrrid |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( -. 0 e. Z -> ( _lcm ` Z ) =/= 0 ) ) |
| 6 |
5
|
necon4bd |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) = 0 -> 0 e. Z ) ) |
| 7 |
|
lcmf0val |
|- ( ( Z C_ ZZ /\ 0 e. Z ) -> ( _lcm ` Z ) = 0 ) |
| 8 |
7
|
ex |
|- ( Z C_ ZZ -> ( 0 e. Z -> ( _lcm ` Z ) = 0 ) ) |
| 9 |
8
|
adantr |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( 0 e. Z -> ( _lcm ` Z ) = 0 ) ) |
| 10 |
6 9
|
impbid |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) = 0 <-> 0 e. Z ) ) |