Description: Lemma for leibpi . (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by Steven Nguyen, 23-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leibpilem1 | |- ( ( N e. NN0 /\ ( -. N = 0 /\ -. 2 || N ) ) -> ( N e. NN /\ ( ( N - 1 ) / 2 ) e. NN0 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0onn | |- ( ( N e. NN0 /\ -. 2 || N ) -> N e. NN ) | |
| 2 | nn0oddm1d2 | |- ( N e. NN0 -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. NN0 ) ) | |
| 3 | 2 | biimpa | |- ( ( N e. NN0 /\ -. 2 || N ) -> ( ( N - 1 ) / 2 ) e. NN0 ) | 
| 4 | 1 3 | jca | |- ( ( N e. NN0 /\ -. 2 || N ) -> ( N e. NN /\ ( ( N - 1 ) / 2 ) e. NN0 ) ) | 
| 5 | 4 | adantrl | |- ( ( N e. NN0 /\ ( -. N = 0 /\ -. 2 || N ) ) -> ( N e. NN /\ ( ( N - 1 ) / 2 ) e. NN0 ) ) |