| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leibpi.1 |  |-  F = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 2 |  | leibpilem2.2 |  |-  G = ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) | 
						
							| 3 |  | leibpilem2.3 |  |-  A e. _V | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 |  | nn0cn |  |-  ( n e. NN0 -> n e. CC ) | 
						
							| 6 |  | mulcl |  |-  ( ( 2 e. CC /\ n e. CC ) -> ( 2 x. n ) e. CC ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( n e. NN0 -> ( 2 x. n ) e. CC ) | 
						
							| 8 |  | ax-1cn |  |-  1 e. CC | 
						
							| 9 |  | pncan |  |-  ( ( ( 2 x. n ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) | 
						
							| 10 | 7 8 9 | sylancl |  |-  ( n e. NN0 -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( n e. NN0 -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( 2 x. n ) / 2 ) ) | 
						
							| 12 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 13 |  | divcan3 |  |-  ( ( n e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. n ) / 2 ) = n ) | 
						
							| 14 | 4 12 13 | mp3an23 |  |-  ( n e. CC -> ( ( 2 x. n ) / 2 ) = n ) | 
						
							| 15 | 5 14 | syl |  |-  ( n e. NN0 -> ( ( 2 x. n ) / 2 ) = n ) | 
						
							| 16 | 11 15 | eqtrd |  |-  ( n e. NN0 -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = n ) | 
						
							| 17 | 16 | oveq2d |  |-  ( n e. NN0 -> ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) = ( -u 1 ^ n ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( n e. NN0 -> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 19 | 18 | mpteq2ia |  |-  ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 20 | 1 19 | eqtr4i |  |-  F = ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 21 |  | seqeq3 |  |-  ( F = ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) -> seq 0 ( + , F ) = seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 22 | 20 21 | ax-mp |  |-  seq 0 ( + , F ) = seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 23 | 22 | breq1i |  |-  ( seq 0 ( + , F ) ~~> A <-> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> A ) | 
						
							| 24 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 25 |  | reexpcl |  |-  ( ( -u 1 e. RR /\ n e. NN0 ) -> ( -u 1 ^ n ) e. RR ) | 
						
							| 26 | 24 25 | mpan |  |-  ( n e. NN0 -> ( -u 1 ^ n ) e. RR ) | 
						
							| 27 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 28 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 29 | 27 28 | mpan |  |-  ( n e. NN0 -> ( 2 x. n ) e. NN0 ) | 
						
							| 30 |  | nn0p1nn |  |-  ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 31 | 29 30 | syl |  |-  ( n e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 32 | 26 31 | nndivred |  |-  ( n e. NN0 -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( n e. NN0 -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) | 
						
							| 34 | 18 33 | eqeltrd |  |-  ( n e. NN0 -> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) e. CC ) | 
						
							| 35 | 34 | adantl |  |-  ( ( T. /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) e. CC ) | 
						
							| 36 |  | oveq1 |  |-  ( k = ( ( 2 x. n ) + 1 ) -> ( k - 1 ) = ( ( ( 2 x. n ) + 1 ) - 1 ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( k = ( ( 2 x. n ) + 1 ) -> ( ( k - 1 ) / 2 ) = ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( k = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) = ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) ) | 
						
							| 39 |  | id |  |-  ( k = ( ( 2 x. n ) + 1 ) -> k = ( ( 2 x. n ) + 1 ) ) | 
						
							| 40 | 38 39 | oveq12d |  |-  ( k = ( ( 2 x. n ) + 1 ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) = ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 41 | 35 40 | iserodd |  |-  ( T. -> ( seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> A <-> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> A ) ) | 
						
							| 42 | 41 | mptru |  |-  ( seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> A <-> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> A ) | 
						
							| 43 |  | addlid |  |-  ( n e. CC -> ( 0 + n ) = n ) | 
						
							| 44 | 43 | adantl |  |-  ( ( T. /\ n e. CC ) -> ( 0 + n ) = n ) | 
						
							| 45 |  | 0cnd |  |-  ( T. -> 0 e. CC ) | 
						
							| 46 |  | 1eluzge0 |  |-  1 e. ( ZZ>= ` 0 ) | 
						
							| 47 | 46 | a1i |  |-  ( T. -> 1 e. ( ZZ>= ` 0 ) ) | 
						
							| 48 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 49 |  | 0cnd |  |-  ( ( k e. NN0 /\ ( k = 0 \/ 2 || k ) ) -> 0 e. CC ) | 
						
							| 50 |  | ioran |  |-  ( -. ( k = 0 \/ 2 || k ) <-> ( -. k = 0 /\ -. 2 || k ) ) | 
						
							| 51 |  | leibpilem1 |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( k e. NN /\ ( ( k - 1 ) / 2 ) e. NN0 ) ) | 
						
							| 52 | 51 | simprd |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( k - 1 ) / 2 ) e. NN0 ) | 
						
							| 53 |  | reexpcl |  |-  ( ( -u 1 e. RR /\ ( ( k - 1 ) / 2 ) e. NN0 ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. RR ) | 
						
							| 54 | 24 52 53 | sylancr |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. RR ) | 
						
							| 55 | 51 | simpld |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. NN ) | 
						
							| 56 | 54 55 | nndivred |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. RR ) | 
						
							| 57 | 56 | recnd |  |-  ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. CC ) | 
						
							| 58 | 50 57 | sylan2b |  |-  ( ( k e. NN0 /\ -. ( k = 0 \/ 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. CC ) | 
						
							| 59 | 49 58 | ifclda |  |-  ( k e. NN0 -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. CC ) | 
						
							| 60 | 2 59 | fmpti |  |-  G : NN0 --> CC | 
						
							| 61 | 60 | ffvelcdmi |  |-  ( 1 e. NN0 -> ( G ` 1 ) e. CC ) | 
						
							| 62 | 48 61 | mp1i |  |-  ( T. -> ( G ` 1 ) e. CC ) | 
						
							| 63 |  | simpr |  |-  ( ( T. /\ n e. ( 0 ... ( 1 - 1 ) ) ) -> n e. ( 0 ... ( 1 - 1 ) ) ) | 
						
							| 64 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 65 | 64 | oveq2i |  |-  ( 0 ... ( 1 - 1 ) ) = ( 0 ... 0 ) | 
						
							| 66 | 63 65 | eleqtrdi |  |-  ( ( T. /\ n e. ( 0 ... ( 1 - 1 ) ) ) -> n e. ( 0 ... 0 ) ) | 
						
							| 67 |  | elfz1eq |  |-  ( n e. ( 0 ... 0 ) -> n = 0 ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( T. /\ n e. ( 0 ... ( 1 - 1 ) ) ) -> n = 0 ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( T. /\ n e. ( 0 ... ( 1 - 1 ) ) ) -> ( G ` n ) = ( G ` 0 ) ) | 
						
							| 70 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 71 |  | iftrue |  |-  ( ( k = 0 \/ 2 || k ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) = 0 ) | 
						
							| 72 | 71 | orcs |  |-  ( k = 0 -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) = 0 ) | 
						
							| 73 |  | c0ex |  |-  0 e. _V | 
						
							| 74 | 72 2 73 | fvmpt |  |-  ( 0 e. NN0 -> ( G ` 0 ) = 0 ) | 
						
							| 75 | 70 74 | ax-mp |  |-  ( G ` 0 ) = 0 | 
						
							| 76 | 69 75 | eqtrdi |  |-  ( ( T. /\ n e. ( 0 ... ( 1 - 1 ) ) ) -> ( G ` n ) = 0 ) | 
						
							| 77 | 44 45 47 62 76 | seqid |  |-  ( T. -> ( seq 0 ( + , G ) |` ( ZZ>= ` 1 ) ) = seq 1 ( + , G ) ) | 
						
							| 78 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 79 |  | simpr |  |-  ( ( T. /\ n e. ( ZZ>= ` 1 ) ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 80 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 81 | 79 80 | eleqtrrdi |  |-  ( ( T. /\ n e. ( ZZ>= ` 1 ) ) -> n e. NN ) | 
						
							| 82 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 83 | 82 | neneqd |  |-  ( n e. NN -> -. n = 0 ) | 
						
							| 84 |  | biorf |  |-  ( -. n = 0 -> ( 2 || n <-> ( n = 0 \/ 2 || n ) ) ) | 
						
							| 85 | 83 84 | syl |  |-  ( n e. NN -> ( 2 || n <-> ( n = 0 \/ 2 || n ) ) ) | 
						
							| 86 | 85 | ifbid |  |-  ( n e. NN -> if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) = if ( ( n = 0 \/ 2 || n ) , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) ) | 
						
							| 87 |  | breq2 |  |-  ( k = n -> ( 2 || k <-> 2 || n ) ) | 
						
							| 88 |  | oveq1 |  |-  ( k = n -> ( k - 1 ) = ( n - 1 ) ) | 
						
							| 89 | 88 | oveq1d |  |-  ( k = n -> ( ( k - 1 ) / 2 ) = ( ( n - 1 ) / 2 ) ) | 
						
							| 90 | 89 | oveq2d |  |-  ( k = n -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) = ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) | 
						
							| 91 |  | id |  |-  ( k = n -> k = n ) | 
						
							| 92 | 90 91 | oveq12d |  |-  ( k = n -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) = ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) | 
						
							| 93 | 87 92 | ifbieq2d |  |-  ( k = n -> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) = if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) ) | 
						
							| 94 |  | eqid |  |-  ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) = ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) | 
						
							| 95 |  | ovex |  |-  ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) e. _V | 
						
							| 96 | 73 95 | ifex |  |-  if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) e. _V | 
						
							| 97 | 93 94 96 | fvmpt |  |-  ( n e. NN -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` n ) = if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) ) | 
						
							| 98 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 99 |  | eqeq1 |  |-  ( k = n -> ( k = 0 <-> n = 0 ) ) | 
						
							| 100 | 99 87 | orbi12d |  |-  ( k = n -> ( ( k = 0 \/ 2 || k ) <-> ( n = 0 \/ 2 || n ) ) ) | 
						
							| 101 | 100 92 | ifbieq2d |  |-  ( k = n -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) = if ( ( n = 0 \/ 2 || n ) , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) ) | 
						
							| 102 | 73 95 | ifex |  |-  if ( ( n = 0 \/ 2 || n ) , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) e. _V | 
						
							| 103 | 101 2 102 | fvmpt |  |-  ( n e. NN0 -> ( G ` n ) = if ( ( n = 0 \/ 2 || n ) , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) ) | 
						
							| 104 | 98 103 | syl |  |-  ( n e. NN -> ( G ` n ) = if ( ( n = 0 \/ 2 || n ) , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) / n ) ) ) | 
						
							| 105 | 86 97 104 | 3eqtr4d |  |-  ( n e. NN -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` n ) = ( G ` n ) ) | 
						
							| 106 | 81 105 | syl |  |-  ( ( T. /\ n e. ( ZZ>= ` 1 ) ) -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` n ) = ( G ` n ) ) | 
						
							| 107 | 78 106 | seqfeq |  |-  ( T. -> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) = seq 1 ( + , G ) ) | 
						
							| 108 | 77 107 | eqtr4d |  |-  ( T. -> ( seq 0 ( + , G ) |` ( ZZ>= ` 1 ) ) = seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ) | 
						
							| 109 | 108 | mptru |  |-  ( seq 0 ( + , G ) |` ( ZZ>= ` 1 ) ) = seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) | 
						
							| 110 | 109 | breq1i |  |-  ( ( seq 0 ( + , G ) |` ( ZZ>= ` 1 ) ) ~~> A <-> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> A ) | 
						
							| 111 |  | 1z |  |-  1 e. ZZ | 
						
							| 112 |  | seqex |  |-  seq 0 ( + , G ) e. _V | 
						
							| 113 |  | climres |  |-  ( ( 1 e. ZZ /\ seq 0 ( + , G ) e. _V ) -> ( ( seq 0 ( + , G ) |` ( ZZ>= ` 1 ) ) ~~> A <-> seq 0 ( + , G ) ~~> A ) ) | 
						
							| 114 | 111 112 113 | mp2an |  |-  ( ( seq 0 ( + , G ) |` ( ZZ>= ` 1 ) ) ~~> A <-> seq 0 ( + , G ) ~~> A ) | 
						
							| 115 | 110 114 | bitr3i |  |-  ( seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> A <-> seq 0 ( + , G ) ~~> A ) | 
						
							| 116 | 23 42 115 | 3bitri |  |-  ( seq 0 ( + , F ) ~~> A <-> seq 0 ( + , G ) ~~> A ) |