| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iserodd.f |  |-  ( ( ph /\ k e. NN0 ) -> C e. CC ) | 
						
							| 2 |  | iserodd.h |  |-  ( n = ( ( 2 x. k ) + 1 ) -> B = C ) | 
						
							| 3 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 4 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 5 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 6 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 7 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 8 | 7 | a1i |  |-  ( ph -> 2 e. NN0 ) | 
						
							| 9 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ m e. NN0 ) -> ( 2 x. m ) e. NN0 ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 x. m ) e. NN0 ) | 
						
							| 11 |  | nn0p1nn |  |-  ( ( 2 x. m ) e. NN0 -> ( ( 2 x. m ) + 1 ) e. NN ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 2 x. m ) + 1 ) e. NN ) | 
						
							| 13 | 12 | fmpttd |  |-  ( ph -> ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) : NN0 --> NN ) | 
						
							| 14 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ i e. NN0 ) -> ( 2 x. i ) e. NN0 ) | 
						
							| 15 | 8 14 | sylan |  |-  ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) e. NN0 ) | 
						
							| 16 | 15 | nn0red |  |-  ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) e. RR ) | 
						
							| 17 |  | peano2nn0 |  |-  ( i e. NN0 -> ( i + 1 ) e. NN0 ) | 
						
							| 18 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ ( i + 1 ) e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. NN0 ) | 
						
							| 19 | 8 17 18 | syl2an |  |-  ( ( ph /\ i e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. NN0 ) | 
						
							| 20 | 19 | nn0red |  |-  ( ( ph /\ i e. NN0 ) -> ( 2 x. ( i + 1 ) ) e. RR ) | 
						
							| 21 |  | 1red |  |-  ( ( ph /\ i e. NN0 ) -> 1 e. RR ) | 
						
							| 22 |  | nn0re |  |-  ( i e. NN0 -> i e. RR ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ i e. NN0 ) -> i e. RR ) | 
						
							| 24 | 23 | ltp1d |  |-  ( ( ph /\ i e. NN0 ) -> i < ( i + 1 ) ) | 
						
							| 25 |  | 1red |  |-  ( i e. NN0 -> 1 e. RR ) | 
						
							| 26 | 22 25 | readdcld |  |-  ( i e. NN0 -> ( i + 1 ) e. RR ) | 
						
							| 27 |  | 2rp |  |-  2 e. RR+ | 
						
							| 28 | 27 | a1i |  |-  ( i e. NN0 -> 2 e. RR+ ) | 
						
							| 29 | 22 26 28 | ltmul2d |  |-  ( i e. NN0 -> ( i < ( i + 1 ) <-> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ i e. NN0 ) -> ( i < ( i + 1 ) <-> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) ) | 
						
							| 31 | 24 30 | mpbid |  |-  ( ( ph /\ i e. NN0 ) -> ( 2 x. i ) < ( 2 x. ( i + 1 ) ) ) | 
						
							| 32 | 16 20 21 31 | ltadd1dd |  |-  ( ( ph /\ i e. NN0 ) -> ( ( 2 x. i ) + 1 ) < ( ( 2 x. ( i + 1 ) ) + 1 ) ) | 
						
							| 33 |  | oveq2 |  |-  ( m = i -> ( 2 x. m ) = ( 2 x. i ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( m = i -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. i ) + 1 ) ) | 
						
							| 35 |  | eqid |  |-  ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) = ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) | 
						
							| 36 |  | ovex |  |-  ( ( 2 x. i ) + 1 ) e. _V | 
						
							| 37 | 34 35 36 | fvmpt |  |-  ( i e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) = ( ( 2 x. i ) + 1 ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) = ( ( 2 x. i ) + 1 ) ) | 
						
							| 39 | 17 | adantl |  |-  ( ( ph /\ i e. NN0 ) -> ( i + 1 ) e. NN0 ) | 
						
							| 40 |  | oveq2 |  |-  ( m = ( i + 1 ) -> ( 2 x. m ) = ( 2 x. ( i + 1 ) ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( m = ( i + 1 ) -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) | 
						
							| 42 |  | ovex |  |-  ( ( 2 x. ( i + 1 ) ) + 1 ) e. _V | 
						
							| 43 | 41 35 42 | fvmpt |  |-  ( ( i + 1 ) e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) | 
						
							| 44 | 39 43 | syl |  |-  ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) = ( ( 2 x. ( i + 1 ) ) + 1 ) ) | 
						
							| 45 | 32 38 44 | 3brtr4d |  |-  ( ( ph /\ i e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) < ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` ( i + 1 ) ) ) | 
						
							| 46 |  | eldifi |  |-  ( n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) -> n e. NN ) | 
						
							| 47 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 48 |  | 0cnd |  |-  ( ( ( ph /\ n e. NN ) /\ 2 || n ) -> 0 e. CC ) | 
						
							| 49 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ph /\ n e. NN ) -> n e. ZZ ) | 
						
							| 51 |  | odd2np1 |  |-  ( n e. ZZ -> ( -. 2 || n <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = n ) ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ph /\ n e. NN ) -> ( -. 2 || n <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = n ) ) | 
						
							| 53 |  | simprl |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. ZZ ) | 
						
							| 54 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 55 | 54 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) e. NN0 ) | 
						
							| 56 | 55 | nn0red |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) e. RR ) | 
						
							| 57 | 27 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 e. RR+ ) | 
						
							| 58 | 55 | nn0ge0d |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ ( n - 1 ) ) | 
						
							| 59 | 56 57 58 | divge0d |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ ( ( n - 1 ) / 2 ) ) | 
						
							| 60 |  | simprr |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( 2 x. k ) + 1 ) = n ) | 
						
							| 61 | 60 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( n - 1 ) ) | 
						
							| 62 |  | 2cn |  |-  2 e. CC | 
						
							| 63 |  | zcn |  |-  ( k e. ZZ -> k e. CC ) | 
						
							| 64 | 63 | ad2antrl |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. CC ) | 
						
							| 65 |  | mulcl |  |-  ( ( 2 e. CC /\ k e. CC ) -> ( 2 x. k ) e. CC ) | 
						
							| 66 | 62 64 65 | sylancr |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( 2 x. k ) e. CC ) | 
						
							| 67 |  | ax-1cn |  |-  1 e. CC | 
						
							| 68 |  | pncan |  |-  ( ( ( 2 x. k ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) | 
						
							| 69 | 66 67 68 | sylancl |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) | 
						
							| 70 | 61 69 | eqtr3d |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( n - 1 ) = ( 2 x. k ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( n - 1 ) / 2 ) = ( ( 2 x. k ) / 2 ) ) | 
						
							| 72 |  | 2cnd |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 e. CC ) | 
						
							| 73 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 74 | 73 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 2 =/= 0 ) | 
						
							| 75 | 64 72 74 | divcan3d |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( 2 x. k ) / 2 ) = k ) | 
						
							| 76 | 71 75 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> ( ( n - 1 ) / 2 ) = k ) | 
						
							| 77 | 59 76 | breqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> 0 <_ k ) | 
						
							| 78 |  | elnn0z |  |-  ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) | 
						
							| 79 | 53 77 78 | sylanbrc |  |-  ( ( ( ph /\ n e. NN ) /\ ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) ) -> k e. NN0 ) | 
						
							| 80 | 79 | ex |  |-  ( ( ph /\ n e. NN ) -> ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> k e. NN0 ) ) | 
						
							| 81 |  | simpr |  |-  ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> ( ( 2 x. k ) + 1 ) = n ) | 
						
							| 82 | 81 | eqcomd |  |-  ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> n = ( ( 2 x. k ) + 1 ) ) | 
						
							| 83 | 80 82 | jca2 |  |-  ( ( ph /\ n e. NN ) -> ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = n ) -> ( k e. NN0 /\ n = ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 84 | 83 | reximdv2 |  |-  ( ( ph /\ n e. NN ) -> ( E. k e. ZZ ( ( 2 x. k ) + 1 ) = n -> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 85 | 52 84 | sylbid |  |-  ( ( ph /\ n e. NN ) -> ( -. 2 || n -> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 86 | 2 | eleq1d |  |-  ( n = ( ( 2 x. k ) + 1 ) -> ( B e. CC <-> C e. CC ) ) | 
						
							| 87 | 1 86 | syl5ibrcom |  |-  ( ( ph /\ k e. NN0 ) -> ( n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) | 
						
							| 88 | 87 | rexlimdva |  |-  ( ph -> ( E. k e. NN0 n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( E. k e. NN0 n = ( ( 2 x. k ) + 1 ) -> B e. CC ) ) | 
						
							| 90 | 85 89 | syld |  |-  ( ( ph /\ n e. NN ) -> ( -. 2 || n -> B e. CC ) ) | 
						
							| 91 | 90 | imp |  |-  ( ( ( ph /\ n e. NN ) /\ -. 2 || n ) -> B e. CC ) | 
						
							| 92 | 48 91 | ifclda |  |-  ( ( ph /\ n e. NN ) -> if ( 2 || n , 0 , B ) e. CC ) | 
						
							| 93 |  | eqid |  |-  ( n e. NN |-> if ( 2 || n , 0 , B ) ) = ( n e. NN |-> if ( 2 || n , 0 , B ) ) | 
						
							| 94 | 93 | fvmpt2 |  |-  ( ( n e. NN /\ if ( 2 || n , 0 , B ) e. CC ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) | 
						
							| 95 | 47 92 94 | syl2anc |  |-  ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) | 
						
							| 96 | 46 95 | sylan2 |  |-  ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = if ( 2 || n , 0 , B ) ) | 
						
							| 97 |  | eldif |  |-  ( n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) <-> ( n e. NN /\ -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) | 
						
							| 98 |  | oveq2 |  |-  ( m = k -> ( 2 x. m ) = ( 2 x. k ) ) | 
						
							| 99 | 98 | oveq1d |  |-  ( m = k -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 100 | 99 | cbvmptv |  |-  ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) = ( k e. NN0 |-> ( ( 2 x. k ) + 1 ) ) | 
						
							| 101 | 100 | elrnmpt |  |-  ( n e. _V -> ( n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) <-> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 102 | 101 | elv |  |-  ( n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) <-> E. k e. NN0 n = ( ( 2 x. k ) + 1 ) ) | 
						
							| 103 | 85 102 | imbitrrdi |  |-  ( ( ph /\ n e. NN ) -> ( -. 2 || n -> n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) | 
						
							| 104 | 103 | con1d |  |-  ( ( ph /\ n e. NN ) -> ( -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) -> 2 || n ) ) | 
						
							| 105 | 104 | impr |  |-  ( ( ph /\ ( n e. NN /\ -. n e. ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> 2 || n ) | 
						
							| 106 | 97 105 | sylan2b |  |-  ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> 2 || n ) | 
						
							| 107 | 106 | iftrued |  |-  ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> if ( 2 || n , 0 , B ) = 0 ) | 
						
							| 108 | 96 107 | eqtrd |  |-  ( ( ph /\ n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 ) | 
						
							| 109 | 108 | ralrimiva |  |-  ( ph -> A. n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 ) | 
						
							| 110 |  | nfv |  |-  F/ j ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 | 
						
							| 111 |  | nffvmpt1 |  |-  F/_ n ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) | 
						
							| 112 | 111 | nfeq1 |  |-  F/ n ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 | 
						
							| 113 |  | fveqeq2 |  |-  ( n = j -> ( ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 <-> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) ) | 
						
							| 114 | 110 112 113 | cbvralw |  |-  ( A. n e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` n ) = 0 <-> A. j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) | 
						
							| 115 | 109 114 | sylib |  |-  ( ph -> A. j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) | 
						
							| 116 | 115 | r19.21bi |  |-  ( ( ph /\ j e. ( NN \ ran ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ) ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) = 0 ) | 
						
							| 117 | 92 | fmpttd |  |-  ( ph -> ( n e. NN |-> if ( 2 || n , 0 , B ) ) : NN --> CC ) | 
						
							| 118 | 117 | ffvelcdmda |  |-  ( ( ph /\ j e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` j ) e. CC ) | 
						
							| 119 |  | simpr |  |-  ( ( ph /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 120 |  | eqid |  |-  ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) | 
						
							| 121 | 120 | fvmpt2 |  |-  ( ( k e. NN0 /\ C e. CC ) -> ( ( k e. NN0 |-> C ) ` k ) = C ) | 
						
							| 122 | 119 1 121 | syl2anc |  |-  ( ( ph /\ k e. NN0 ) -> ( ( k e. NN0 |-> C ) ` k ) = C ) | 
						
							| 123 |  | ovex |  |-  ( ( 2 x. k ) + 1 ) e. _V | 
						
							| 124 | 99 35 123 | fvmpt |  |-  ( k e. NN0 -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 125 | 124 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 126 | 125 | fveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 127 |  | breq2 |  |-  ( n = ( ( 2 x. k ) + 1 ) -> ( 2 || n <-> 2 || ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 128 | 127 2 | ifbieq2d |  |-  ( n = ( ( 2 x. k ) + 1 ) -> if ( 2 || n , 0 , B ) = if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) ) | 
						
							| 129 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) | 
						
							| 130 | 8 129 | sylan |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) | 
						
							| 131 |  | nn0p1nn |  |-  ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 132 | 130 131 | syl |  |-  ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 133 |  | 2z |  |-  2 e. ZZ | 
						
							| 134 |  | nn0z |  |-  ( k e. NN0 -> k e. ZZ ) | 
						
							| 135 | 134 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> k e. ZZ ) | 
						
							| 136 |  | dvdsmul1 |  |-  ( ( 2 e. ZZ /\ k e. ZZ ) -> 2 || ( 2 x. k ) ) | 
						
							| 137 | 133 135 136 | sylancr |  |-  ( ( ph /\ k e. NN0 ) -> 2 || ( 2 x. k ) ) | 
						
							| 138 | 130 | nn0zd |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. ZZ ) | 
						
							| 139 |  | 2nn |  |-  2 e. NN | 
						
							| 140 | 139 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> 2 e. NN ) | 
						
							| 141 |  | 1lt2 |  |-  1 < 2 | 
						
							| 142 | 141 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> 1 < 2 ) | 
						
							| 143 |  | ndvdsp1 |  |-  ( ( ( 2 x. k ) e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ( 2 x. k ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 144 | 138 140 142 143 | syl3anc |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 || ( 2 x. k ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 145 | 137 144 | mpd |  |-  ( ( ph /\ k e. NN0 ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) | 
						
							| 146 | 145 | iffalsed |  |-  ( ( ph /\ k e. NN0 ) -> if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) = C ) | 
						
							| 147 | 146 1 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) e. CC ) | 
						
							| 148 | 93 128 132 147 | fvmptd3 |  |-  ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( 2 x. k ) + 1 ) ) = if ( 2 || ( ( 2 x. k ) + 1 ) , 0 , C ) ) | 
						
							| 149 | 126 148 146 | 3eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = C ) | 
						
							| 150 | 122 149 | eqtr4d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) ) | 
						
							| 151 | 150 | ralrimiva |  |-  ( ph -> A. k e. NN0 ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) ) | 
						
							| 152 |  | nfv |  |-  F/ i ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) | 
						
							| 153 |  | nffvmpt1 |  |-  F/_ k ( ( k e. NN0 |-> C ) ` i ) | 
						
							| 154 | 153 | nfeq1 |  |-  F/ k ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) | 
						
							| 155 |  | fveq2 |  |-  ( k = i -> ( ( k e. NN0 |-> C ) ` k ) = ( ( k e. NN0 |-> C ) ` i ) ) | 
						
							| 156 |  | 2fveq3 |  |-  ( k = i -> ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) | 
						
							| 157 | 155 156 | eqeq12d |  |-  ( k = i -> ( ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) <-> ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) ) | 
						
							| 158 | 152 154 157 | cbvralw |  |-  ( A. k e. NN0 ( ( k e. NN0 |-> C ) ` k ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` k ) ) <-> A. i e. NN0 ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) | 
						
							| 159 | 151 158 | sylib |  |-  ( ph -> A. i e. NN0 ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) | 
						
							| 160 | 159 | r19.21bi |  |-  ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> C ) ` i ) = ( ( n e. NN |-> if ( 2 || n , 0 , B ) ) ` ( ( m e. NN0 |-> ( ( 2 x. m ) + 1 ) ) ` i ) ) ) | 
						
							| 161 | 3 4 5 6 13 45 116 118 160 | isercoll2 |  |-  ( ph -> ( seq 0 ( + , ( k e. NN0 |-> C ) ) ~~> A <-> seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , B ) ) ) ~~> A ) ) |