Metamath Proof Explorer


Theorem leibpilem2

Description: The Leibniz formula for _pi . (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses leibpi.1 F=n01n2n+1
leibpilem2.2 G=k0ifk=02k01k12k
leibpilem2.3 AV
Assertion leibpilem2 seq0+FAseq0+GA

Proof

Step Hyp Ref Expression
1 leibpi.1 F=n01n2n+1
2 leibpilem2.2 G=k0ifk=02k01k12k
3 leibpilem2.3 AV
4 2cn 2
5 nn0cn n0n
6 mulcl 2n2n
7 4 5 6 sylancr n02n
8 ax-1cn 1
9 pncan 2n12n+1-1=2n
10 7 8 9 sylancl n02n+1-1=2n
11 10 oveq1d n02n+1-12=2n2
12 2ne0 20
13 divcan3 n2202n2=n
14 4 12 13 mp3an23 n2n2=n
15 5 14 syl n02n2=n
16 11 15 eqtrd n02n+1-12=n
17 16 oveq2d n012n+1-12=1n
18 17 oveq1d n012n+1-122n+1=1n2n+1
19 18 mpteq2ia n012n+1-122n+1=n01n2n+1
20 1 19 eqtr4i F=n012n+1-122n+1
21 seqeq3 F=n012n+1-122n+1seq0+F=seq0+n012n+1-122n+1
22 20 21 ax-mp seq0+F=seq0+n012n+1-122n+1
23 22 breq1i seq0+FAseq0+n012n+1-122n+1A
24 neg1rr 1
25 reexpcl 1n01n
26 24 25 mpan n01n
27 2nn0 20
28 nn0mulcl 20n02n0
29 27 28 mpan n02n0
30 nn0p1nn 2n02n+1
31 29 30 syl n02n+1
32 26 31 nndivred n01n2n+1
33 32 recnd n01n2n+1
34 18 33 eqeltrd n012n+1-122n+1
35 34 adantl n012n+1-122n+1
36 oveq1 k=2n+1k1=2n+1-1
37 36 oveq1d k=2n+1k12=2n+1-12
38 37 oveq2d k=2n+11k12=12n+1-12
39 id k=2n+1k=2n+1
40 38 39 oveq12d k=2n+11k12k=12n+1-122n+1
41 35 40 iserodd seq0+n012n+1-122n+1Aseq1+kif2k01k12kA
42 41 mptru seq0+n012n+1-122n+1Aseq1+kif2k01k12kA
43 addlid n0+n=n
44 43 adantl n0+n=n
45 0cnd 0
46 1eluzge0 10
47 46 a1i 10
48 1nn0 10
49 0cnd k0k=02k0
50 ioran ¬k=02k¬k=0¬2k
51 leibpilem1 k0¬k=0¬2kkk120
52 51 simprd k0¬k=0¬2kk120
53 reexpcl 1k1201k12
54 24 52 53 sylancr k0¬k=0¬2k1k12
55 51 simpld k0¬k=0¬2kk
56 54 55 nndivred k0¬k=0¬2k1k12k
57 56 recnd k0¬k=0¬2k1k12k
58 50 57 sylan2b k0¬k=02k1k12k
59 49 58 ifclda k0ifk=02k01k12k
60 2 59 fmpti G:0
61 60 ffvelcdmi 10G1
62 48 61 mp1i G1
63 simpr n011n011
64 1m1e0 11=0
65 64 oveq2i 011=00
66 63 65 eleqtrdi n011n00
67 elfz1eq n00n=0
68 66 67 syl n011n=0
69 68 fveq2d n011Gn=G0
70 0nn0 00
71 iftrue k=02kifk=02k01k12k=0
72 71 orcs k=0ifk=02k01k12k=0
73 c0ex 0V
74 72 2 73 fvmpt 00G0=0
75 70 74 ax-mp G0=0
76 69 75 eqtrdi n011Gn=0
77 44 45 47 62 76 seqid seq0+G1=seq1+G
78 1zzd 1
79 simpr n1n1
80 nnuz =1
81 79 80 eleqtrrdi n1n
82 nnne0 nn0
83 82 neneqd n¬n=0
84 biorf ¬n=02nn=02n
85 83 84 syl n2nn=02n
86 85 ifbid nif2n01n12n=ifn=02n01n12n
87 breq2 k=n2k2n
88 oveq1 k=nk1=n1
89 88 oveq1d k=nk12=n12
90 89 oveq2d k=n1k12=1n12
91 id k=nk=n
92 90 91 oveq12d k=n1k12k=1n12n
93 87 92 ifbieq2d k=nif2k01k12k=if2n01n12n
94 eqid kif2k01k12k=kif2k01k12k
95 ovex 1n12nV
96 73 95 ifex if2n01n12nV
97 93 94 96 fvmpt nkif2k01k12kn=if2n01n12n
98 nnnn0 nn0
99 eqeq1 k=nk=0n=0
100 99 87 orbi12d k=nk=02kn=02n
101 100 92 ifbieq2d k=nifk=02k01k12k=ifn=02n01n12n
102 73 95 ifex ifn=02n01n12nV
103 101 2 102 fvmpt n0Gn=ifn=02n01n12n
104 98 103 syl nGn=ifn=02n01n12n
105 86 97 104 3eqtr4d nkif2k01k12kn=Gn
106 81 105 syl n1kif2k01k12kn=Gn
107 78 106 seqfeq seq1+kif2k01k12k=seq1+G
108 77 107 eqtr4d seq0+G1=seq1+kif2k01k12k
109 108 mptru seq0+G1=seq1+kif2k01k12k
110 109 breq1i seq0+G1Aseq1+kif2k01k12kA
111 1z 1
112 seqex seq0+GV
113 climres 1seq0+GVseq0+G1Aseq0+GA
114 111 112 113 mp2an seq0+G1Aseq0+GA
115 110 114 bitr3i seq1+kif2k01k12kAseq0+GA
116 23 42 115 3bitri seq0+FAseq0+GA