Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
leibpilem2
Next ⟩
leibpi
Metamath Proof Explorer
Ascii
Unicode
Theorem
leibpilem2
Description:
The Leibniz formula for
_pi
.
(Contributed by
Mario Carneiro
, 7-Apr-2015)
Ref
Expression
Hypotheses
leibpi.1
⊢
F
=
n
∈
ℕ
0
⟼
−
1
n
2
n
+
1
leibpilem2.2
⊢
G
=
k
∈
ℕ
0
⟼
if
k
=
0
∨
2
∥
k
0
−
1
k
−
1
2
k
leibpilem2.3
⊢
A
∈
V
Assertion
leibpilem2
⊢
seq
0
+
F
⇝
A
↔
seq
0
+
G
⇝
A
Proof
Step
Hyp
Ref
Expression
1
leibpi.1
⊢
F
=
n
∈
ℕ
0
⟼
−
1
n
2
n
+
1
2
leibpilem2.2
⊢
G
=
k
∈
ℕ
0
⟼
if
k
=
0
∨
2
∥
k
0
−
1
k
−
1
2
k
3
leibpilem2.3
⊢
A
∈
V
4
2cn
⊢
2
∈
ℂ
5
nn0cn
⊢
n
∈
ℕ
0
→
n
∈
ℂ
6
mulcl
⊢
2
∈
ℂ
∧
n
∈
ℂ
→
2
n
∈
ℂ
7
4
5
6
sylancr
⊢
n
∈
ℕ
0
→
2
n
∈
ℂ
8
ax-1cn
⊢
1
∈
ℂ
9
pncan
⊢
2
n
∈
ℂ
∧
1
∈
ℂ
→
2
n
+
1
-
1
=
2
n
10
7
8
9
sylancl
⊢
n
∈
ℕ
0
→
2
n
+
1
-
1
=
2
n
11
10
oveq1d
⊢
n
∈
ℕ
0
→
2
n
+
1
-
1
2
=
2
n
2
12
2ne0
⊢
2
≠
0
13
divcan3
⊢
n
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
2
n
2
=
n
14
4
12
13
mp3an23
⊢
n
∈
ℂ
→
2
n
2
=
n
15
5
14
syl
⊢
n
∈
ℕ
0
→
2
n
2
=
n
16
11
15
eqtrd
⊢
n
∈
ℕ
0
→
2
n
+
1
-
1
2
=
n
17
16
oveq2d
⊢
n
∈
ℕ
0
→
−
1
2
n
+
1
-
1
2
=
−
1
n
18
17
oveq1d
⊢
n
∈
ℕ
0
→
−
1
2
n
+
1
-
1
2
2
n
+
1
=
−
1
n
2
n
+
1
19
18
mpteq2ia
⊢
n
∈
ℕ
0
⟼
−
1
2
n
+
1
-
1
2
2
n
+
1
=
n
∈
ℕ
0
⟼
−
1
n
2
n
+
1
20
1
19
eqtr4i
⊢
F
=
n
∈
ℕ
0
⟼
−
1
2
n
+
1
-
1
2
2
n
+
1
21
seqeq3
⊢
F
=
n
∈
ℕ
0
⟼
−
1
2
n
+
1
-
1
2
2
n
+
1
→
seq
0
+
F
=
seq
0
+
n
∈
ℕ
0
⟼
−
1
2
n
+
1
-
1
2
2
n
+
1
22
20
21
ax-mp
⊢
seq
0
+
F
=
seq
0
+
n
∈
ℕ
0
⟼
−
1
2
n
+
1
-
1
2
2
n
+
1
23
22
breq1i
⊢
seq
0
+
F
⇝
A
↔
seq
0
+
n
∈
ℕ
0
⟼
−
1
2
n
+
1
-
1
2
2
n
+
1
⇝
A
24
neg1rr
⊢
−
1
∈
ℝ
25
reexpcl
⊢
−
1
∈
ℝ
∧
n
∈
ℕ
0
→
−
1
n
∈
ℝ
26
24
25
mpan
⊢
n
∈
ℕ
0
→
−
1
n
∈
ℝ
27
2nn0
⊢
2
∈
ℕ
0
28
nn0mulcl
⊢
2
∈
ℕ
0
∧
n
∈
ℕ
0
→
2
n
∈
ℕ
0
29
27
28
mpan
⊢
n
∈
ℕ
0
→
2
n
∈
ℕ
0
30
nn0p1nn
⊢
2
n
∈
ℕ
0
→
2
n
+
1
∈
ℕ
31
29
30
syl
⊢
n
∈
ℕ
0
→
2
n
+
1
∈
ℕ
32
26
31
nndivred
⊢
n
∈
ℕ
0
→
−
1
n
2
n
+
1
∈
ℝ
33
32
recnd
⊢
n
∈
ℕ
0
→
−
1
n
2
n
+
1
∈
ℂ
34
18
33
eqeltrd
⊢
n
∈
ℕ
0
→
−
1
2
n
+
1
-
1
2
2
n
+
1
∈
ℂ
35
34
adantl
⊢
⊤
∧
n
∈
ℕ
0
→
−
1
2
n
+
1
-
1
2
2
n
+
1
∈
ℂ
36
oveq1
⊢
k
=
2
n
+
1
→
k
−
1
=
2
n
+
1
-
1
37
36
oveq1d
⊢
k
=
2
n
+
1
→
k
−
1
2
=
2
n
+
1
-
1
2
38
37
oveq2d
⊢
k
=
2
n
+
1
→
−
1
k
−
1
2
=
−
1
2
n
+
1
-
1
2
39
id
⊢
k
=
2
n
+
1
→
k
=
2
n
+
1
40
38
39
oveq12d
⊢
k
=
2
n
+
1
→
−
1
k
−
1
2
k
=
−
1
2
n
+
1
-
1
2
2
n
+
1
41
35
40
iserodd
⊢
⊤
→
seq
0
+
n
∈
ℕ
0
⟼
−
1
2
n
+
1
-
1
2
2
n
+
1
⇝
A
↔
seq
1
+
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
⇝
A
42
41
mptru
⊢
seq
0
+
n
∈
ℕ
0
⟼
−
1
2
n
+
1
-
1
2
2
n
+
1
⇝
A
↔
seq
1
+
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
⇝
A
43
addlid
⊢
n
∈
ℂ
→
0
+
n
=
n
44
43
adantl
⊢
⊤
∧
n
∈
ℂ
→
0
+
n
=
n
45
0cnd
⊢
⊤
→
0
∈
ℂ
46
1eluzge0
⊢
1
∈
ℤ
≥
0
47
46
a1i
⊢
⊤
→
1
∈
ℤ
≥
0
48
1nn0
⊢
1
∈
ℕ
0
49
0cnd
⊢
k
∈
ℕ
0
∧
k
=
0
∨
2
∥
k
→
0
∈
ℂ
50
ioran
⊢
¬
k
=
0
∨
2
∥
k
↔
¬
k
=
0
∧
¬
2
∥
k
51
leibpilem1
⊢
k
∈
ℕ
0
∧
¬
k
=
0
∧
¬
2
∥
k
→
k
∈
ℕ
∧
k
−
1
2
∈
ℕ
0
52
51
simprd
⊢
k
∈
ℕ
0
∧
¬
k
=
0
∧
¬
2
∥
k
→
k
−
1
2
∈
ℕ
0
53
reexpcl
⊢
−
1
∈
ℝ
∧
k
−
1
2
∈
ℕ
0
→
−
1
k
−
1
2
∈
ℝ
54
24
52
53
sylancr
⊢
k
∈
ℕ
0
∧
¬
k
=
0
∧
¬
2
∥
k
→
−
1
k
−
1
2
∈
ℝ
55
51
simpld
⊢
k
∈
ℕ
0
∧
¬
k
=
0
∧
¬
2
∥
k
→
k
∈
ℕ
56
54
55
nndivred
⊢
k
∈
ℕ
0
∧
¬
k
=
0
∧
¬
2
∥
k
→
−
1
k
−
1
2
k
∈
ℝ
57
56
recnd
⊢
k
∈
ℕ
0
∧
¬
k
=
0
∧
¬
2
∥
k
→
−
1
k
−
1
2
k
∈
ℂ
58
50
57
sylan2b
⊢
k
∈
ℕ
0
∧
¬
k
=
0
∨
2
∥
k
→
−
1
k
−
1
2
k
∈
ℂ
59
49
58
ifclda
⊢
k
∈
ℕ
0
→
if
k
=
0
∨
2
∥
k
0
−
1
k
−
1
2
k
∈
ℂ
60
2
59
fmpti
⊢
G
:
ℕ
0
⟶
ℂ
61
60
ffvelcdmi
⊢
1
∈
ℕ
0
→
G
1
∈
ℂ
62
48
61
mp1i
⊢
⊤
→
G
1
∈
ℂ
63
simpr
⊢
⊤
∧
n
∈
0
…
1
−
1
→
n
∈
0
…
1
−
1
64
1m1e0
⊢
1
−
1
=
0
65
64
oveq2i
⊢
0
…
1
−
1
=
0
…
0
66
63
65
eleqtrdi
⊢
⊤
∧
n
∈
0
…
1
−
1
→
n
∈
0
…
0
67
elfz1eq
⊢
n
∈
0
…
0
→
n
=
0
68
66
67
syl
⊢
⊤
∧
n
∈
0
…
1
−
1
→
n
=
0
69
68
fveq2d
⊢
⊤
∧
n
∈
0
…
1
−
1
→
G
n
=
G
0
70
0nn0
⊢
0
∈
ℕ
0
71
iftrue
⊢
k
=
0
∨
2
∥
k
→
if
k
=
0
∨
2
∥
k
0
−
1
k
−
1
2
k
=
0
72
71
orcs
⊢
k
=
0
→
if
k
=
0
∨
2
∥
k
0
−
1
k
−
1
2
k
=
0
73
c0ex
⊢
0
∈
V
74
72
2
73
fvmpt
⊢
0
∈
ℕ
0
→
G
0
=
0
75
70
74
ax-mp
⊢
G
0
=
0
76
69
75
eqtrdi
⊢
⊤
∧
n
∈
0
…
1
−
1
→
G
n
=
0
77
44
45
47
62
76
seqid
⊢
⊤
→
seq
0
+
G
↾
ℤ
≥
1
=
seq
1
+
G
78
1zzd
⊢
⊤
→
1
∈
ℤ
79
simpr
⊢
⊤
∧
n
∈
ℤ
≥
1
→
n
∈
ℤ
≥
1
80
nnuz
⊢
ℕ
=
ℤ
≥
1
81
79
80
eleqtrrdi
⊢
⊤
∧
n
∈
ℤ
≥
1
→
n
∈
ℕ
82
nnne0
⊢
n
∈
ℕ
→
n
≠
0
83
82
neneqd
⊢
n
∈
ℕ
→
¬
n
=
0
84
biorf
⊢
¬
n
=
0
→
2
∥
n
↔
n
=
0
∨
2
∥
n
85
83
84
syl
⊢
n
∈
ℕ
→
2
∥
n
↔
n
=
0
∨
2
∥
n
86
85
ifbid
⊢
n
∈
ℕ
→
if
2
∥
n
0
−
1
n
−
1
2
n
=
if
n
=
0
∨
2
∥
n
0
−
1
n
−
1
2
n
87
breq2
⊢
k
=
n
→
2
∥
k
↔
2
∥
n
88
oveq1
⊢
k
=
n
→
k
−
1
=
n
−
1
89
88
oveq1d
⊢
k
=
n
→
k
−
1
2
=
n
−
1
2
90
89
oveq2d
⊢
k
=
n
→
−
1
k
−
1
2
=
−
1
n
−
1
2
91
id
⊢
k
=
n
→
k
=
n
92
90
91
oveq12d
⊢
k
=
n
→
−
1
k
−
1
2
k
=
−
1
n
−
1
2
n
93
87
92
ifbieq2d
⊢
k
=
n
→
if
2
∥
k
0
−
1
k
−
1
2
k
=
if
2
∥
n
0
−
1
n
−
1
2
n
94
eqid
⊢
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
=
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
95
ovex
⊢
−
1
n
−
1
2
n
∈
V
96
73
95
ifex
⊢
if
2
∥
n
0
−
1
n
−
1
2
n
∈
V
97
93
94
96
fvmpt
⊢
n
∈
ℕ
→
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
n
=
if
2
∥
n
0
−
1
n
−
1
2
n
98
nnnn0
⊢
n
∈
ℕ
→
n
∈
ℕ
0
99
eqeq1
⊢
k
=
n
→
k
=
0
↔
n
=
0
100
99
87
orbi12d
⊢
k
=
n
→
k
=
0
∨
2
∥
k
↔
n
=
0
∨
2
∥
n
101
100
92
ifbieq2d
⊢
k
=
n
→
if
k
=
0
∨
2
∥
k
0
−
1
k
−
1
2
k
=
if
n
=
0
∨
2
∥
n
0
−
1
n
−
1
2
n
102
73
95
ifex
⊢
if
n
=
0
∨
2
∥
n
0
−
1
n
−
1
2
n
∈
V
103
101
2
102
fvmpt
⊢
n
∈
ℕ
0
→
G
n
=
if
n
=
0
∨
2
∥
n
0
−
1
n
−
1
2
n
104
98
103
syl
⊢
n
∈
ℕ
→
G
n
=
if
n
=
0
∨
2
∥
n
0
−
1
n
−
1
2
n
105
86
97
104
3eqtr4d
⊢
n
∈
ℕ
→
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
n
=
G
n
106
81
105
syl
⊢
⊤
∧
n
∈
ℤ
≥
1
→
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
n
=
G
n
107
78
106
seqfeq
⊢
⊤
→
seq
1
+
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
=
seq
1
+
G
108
77
107
eqtr4d
⊢
⊤
→
seq
0
+
G
↾
ℤ
≥
1
=
seq
1
+
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
109
108
mptru
⊢
seq
0
+
G
↾
ℤ
≥
1
=
seq
1
+
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
110
109
breq1i
⊢
seq
0
+
G
↾
ℤ
≥
1
⇝
A
↔
seq
1
+
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
⇝
A
111
1z
⊢
1
∈
ℤ
112
seqex
⊢
seq
0
+
G
∈
V
113
climres
⊢
1
∈
ℤ
∧
seq
0
+
G
∈
V
→
seq
0
+
G
↾
ℤ
≥
1
⇝
A
↔
seq
0
+
G
⇝
A
114
111
112
113
mp2an
⊢
seq
0
+
G
↾
ℤ
≥
1
⇝
A
↔
seq
0
+
G
⇝
A
115
110
114
bitr3i
⊢
seq
1
+
k
∈
ℕ
⟼
if
2
∥
k
0
−
1
k
−
1
2
k
⇝
A
↔
seq
0
+
G
⇝
A
116
23
42
115
3bitri
⊢
seq
0
+
F
⇝
A
↔
seq
0
+
G
⇝
A