| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leibpi.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 2 |  | leibpilem2.2 | ⊢ 𝐺  =  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) | 
						
							| 3 |  | leibpilem2.3 | ⊢ 𝐴  ∈  V | 
						
							| 4 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 5 |  | nn0cn | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℂ ) | 
						
							| 6 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 8 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 9 |  | pncan | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 )  =  ( ( 2  ·  𝑛 )  /  2 ) ) | 
						
							| 12 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 13 |  | divcan3 | ⊢ ( ( 𝑛  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( 2  ·  𝑛 )  /  2 )  =  𝑛 ) | 
						
							| 14 | 4 12 13 | mp3an23 | ⊢ ( 𝑛  ∈  ℂ  →  ( ( 2  ·  𝑛 )  /  2 )  =  𝑛 ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  /  2 )  =  𝑛 ) | 
						
							| 16 | 11 15 | eqtrd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 )  =  𝑛 ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑛  ∈  ℕ0  →  ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  =  ( - 1 ↑ 𝑛 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 19 | 18 | mpteq2ia | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 20 | 1 19 | eqtr4i | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 21 |  | seqeq3 | ⊢ ( 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  →  seq 0 (  +  ,  𝐹 )  =  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ seq 0 (  +  ,  𝐹 )  =  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 23 | 22 | breq1i | ⊢ ( seq 0 (  +  ,  𝐹 )  ⇝  𝐴  ↔  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ⇝  𝐴 ) | 
						
							| 24 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 25 |  | reexpcl | ⊢ ( ( - 1  ∈  ℝ  ∧  𝑛  ∈  ℕ0 )  →  ( - 1 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 26 | 24 25 | mpan | ⊢ ( 𝑛  ∈  ℕ0  →  ( - 1 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 27 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 28 |  | nn0mulcl | ⊢ ( ( 2  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 29 | 27 28 | mpan | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 30 |  | nn0p1nn | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 32 | 26 31 | nndivred | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℝ ) | 
						
							| 33 | 32 | recnd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 34 | 18 33 | eqeltrd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ0 )  →  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( 𝑘  −  1 )  =  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( ( 𝑘  −  1 )  /  2 )  =  ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  =  ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) ) ) | 
						
							| 39 |  | id | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  𝑘  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 40 | 38 39 | oveq12d | ⊢ ( 𝑘  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  =  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 41 | 35 40 | iserodd | ⊢ ( ⊤  →  ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ⇝  𝐴  ↔  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  𝐴 ) ) | 
						
							| 42 | 41 | mptru | ⊢ ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ ( ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  /  2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ⇝  𝐴  ↔  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  𝐴 ) | 
						
							| 43 |  | addlid | ⊢ ( 𝑛  ∈  ℂ  →  ( 0  +  𝑛 )  =  𝑛 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℂ )  →  ( 0  +  𝑛 )  =  𝑛 ) | 
						
							| 45 |  | 0cnd | ⊢ ( ⊤  →  0  ∈  ℂ ) | 
						
							| 46 |  | 1eluzge0 | ⊢ 1  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 47 | 46 | a1i | ⊢ ( ⊤  →  1  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 48 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 49 |  | 0cnd | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) )  →  0  ∈  ℂ ) | 
						
							| 50 |  | ioran | ⊢ ( ¬  ( 𝑘  =  0  ∨  2  ∥  𝑘 )  ↔  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) ) | 
						
							| 51 |  | leibpilem1 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( 𝑘  ∈  ℕ  ∧  ( ( 𝑘  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 52 | 51 | simprd | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( 𝑘  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 53 |  | reexpcl | ⊢ ( ( - 1  ∈  ℝ  ∧  ( ( 𝑘  −  1 )  /  2 )  ∈  ℕ0 )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ∈  ℝ ) | 
						
							| 54 | 24 52 53 | sylancr | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ∈  ℝ ) | 
						
							| 55 | 51 | simpld | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 56 | 54 55 | nndivred | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ∈  ℝ ) | 
						
							| 57 | 56 | recnd | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ∈  ℂ ) | 
						
							| 58 | 50 57 | sylan2b | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ¬  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ∈  ℂ ) | 
						
							| 59 | 49 58 | ifclda | ⊢ ( 𝑘  ∈  ℕ0  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 60 | 2 59 | fmpti | ⊢ 𝐺 : ℕ0 ⟶ ℂ | 
						
							| 61 | 60 | ffvelcdmi | ⊢ ( 1  ∈  ℕ0  →  ( 𝐺 ‘ 1 )  ∈  ℂ ) | 
						
							| 62 | 48 61 | mp1i | ⊢ ( ⊤  →  ( 𝐺 ‘ 1 )  ∈  ℂ ) | 
						
							| 63 |  | simpr | ⊢ ( ( ⊤  ∧  𝑛  ∈  ( 0 ... ( 1  −  1 ) ) )  →  𝑛  ∈  ( 0 ... ( 1  −  1 ) ) ) | 
						
							| 64 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 65 | 64 | oveq2i | ⊢ ( 0 ... ( 1  −  1 ) )  =  ( 0 ... 0 ) | 
						
							| 66 | 63 65 | eleqtrdi | ⊢ ( ( ⊤  ∧  𝑛  ∈  ( 0 ... ( 1  −  1 ) ) )  →  𝑛  ∈  ( 0 ... 0 ) ) | 
						
							| 67 |  | elfz1eq | ⊢ ( 𝑛  ∈  ( 0 ... 0 )  →  𝑛  =  0 ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ( 0 ... ( 1  −  1 ) ) )  →  𝑛  =  0 ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( ( ⊤  ∧  𝑛  ∈  ( 0 ... ( 1  −  1 ) ) )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 70 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 71 |  | iftrue | ⊢ ( ( 𝑘  =  0  ∨  2  ∥  𝑘 )  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  =  0 ) | 
						
							| 72 | 71 | orcs | ⊢ ( 𝑘  =  0  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  =  0 ) | 
						
							| 73 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 74 | 72 2 73 | fvmpt | ⊢ ( 0  ∈  ℕ0  →  ( 𝐺 ‘ 0 )  =  0 ) | 
						
							| 75 | 70 74 | ax-mp | ⊢ ( 𝐺 ‘ 0 )  =  0 | 
						
							| 76 | 69 75 | eqtrdi | ⊢ ( ( ⊤  ∧  𝑛  ∈  ( 0 ... ( 1  −  1 ) ) )  →  ( 𝐺 ‘ 𝑛 )  =  0 ) | 
						
							| 77 | 44 45 47 62 76 | seqid | ⊢ ( ⊤  →  ( seq 0 (  +  ,  𝐺 )  ↾  ( ℤ≥ ‘ 1 ) )  =  seq 1 (  +  ,  𝐺 ) ) | 
						
							| 78 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 79 |  | simpr | ⊢ ( ( ⊤  ∧  𝑛  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 80 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 81 | 79 80 | eleqtrrdi | ⊢ ( ( ⊤  ∧  𝑛  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 82 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 83 | 82 | neneqd | ⊢ ( 𝑛  ∈  ℕ  →  ¬  𝑛  =  0 ) | 
						
							| 84 |  | biorf | ⊢ ( ¬  𝑛  =  0  →  ( 2  ∥  𝑛  ↔  ( 𝑛  =  0  ∨  2  ∥  𝑛 ) ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ∥  𝑛  ↔  ( 𝑛  =  0  ∨  2  ∥  𝑛 ) ) ) | 
						
							| 86 | 85 | ifbid | ⊢ ( 𝑛  ∈  ℕ  →  if ( 2  ∥  𝑛 ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) )  =  if ( ( 𝑛  =  0  ∨  2  ∥  𝑛 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) ) ) | 
						
							| 87 |  | breq2 | ⊢ ( 𝑘  =  𝑛  →  ( 2  ∥  𝑘  ↔  2  ∥  𝑛 ) ) | 
						
							| 88 |  | oveq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  −  1 )  =  ( 𝑛  −  1 ) ) | 
						
							| 89 | 88 | oveq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑘  −  1 )  /  2 )  =  ( ( 𝑛  −  1 )  /  2 ) ) | 
						
							| 90 | 89 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  =  ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) ) ) | 
						
							| 91 |  | id | ⊢ ( 𝑘  =  𝑛  →  𝑘  =  𝑛 ) | 
						
							| 92 | 90 91 | oveq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  =  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) ) | 
						
							| 93 | 87 92 | ifbieq2d | ⊢ ( 𝑘  =  𝑛  →  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  =  if ( 2  ∥  𝑛 ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) ) ) | 
						
							| 94 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) )  =  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) | 
						
							| 95 |  | ovex | ⊢ ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 )  ∈  V | 
						
							| 96 | 73 95 | ifex | ⊢ if ( 2  ∥  𝑛 ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) )  ∈  V | 
						
							| 97 | 93 94 96 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑛 )  =  if ( 2  ∥  𝑛 ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) ) ) | 
						
							| 98 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 99 |  | eqeq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  =  0  ↔  𝑛  =  0 ) ) | 
						
							| 100 | 99 87 | orbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑘  =  0  ∨  2  ∥  𝑘 )  ↔  ( 𝑛  =  0  ∨  2  ∥  𝑛 ) ) ) | 
						
							| 101 | 100 92 | ifbieq2d | ⊢ ( 𝑘  =  𝑛  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  =  if ( ( 𝑛  =  0  ∨  2  ∥  𝑛 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) ) ) | 
						
							| 102 | 73 95 | ifex | ⊢ if ( ( 𝑛  =  0  ∨  2  ∥  𝑛 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) )  ∈  V | 
						
							| 103 | 101 2 102 | fvmpt | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝐺 ‘ 𝑛 )  =  if ( ( 𝑛  =  0  ∨  2  ∥  𝑛 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) ) ) | 
						
							| 104 | 98 103 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐺 ‘ 𝑛 )  =  if ( ( 𝑛  =  0  ∨  2  ∥  𝑛 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑛  −  1 )  /  2 ) )  /  𝑛 ) ) ) | 
						
							| 105 | 86 97 104 | 3eqtr4d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 106 | 81 105 | syl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 107 | 78 106 | seqfeq | ⊢ ( ⊤  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  =  seq 1 (  +  ,  𝐺 ) ) | 
						
							| 108 | 77 107 | eqtr4d | ⊢ ( ⊤  →  ( seq 0 (  +  ,  𝐺 )  ↾  ( ℤ≥ ‘ 1 ) )  =  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ) ) | 
						
							| 109 | 108 | mptru | ⊢ ( seq 0 (  +  ,  𝐺 )  ↾  ( ℤ≥ ‘ 1 ) )  =  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ) | 
						
							| 110 | 109 | breq1i | ⊢ ( ( seq 0 (  +  ,  𝐺 )  ↾  ( ℤ≥ ‘ 1 ) )  ⇝  𝐴  ↔  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  𝐴 ) | 
						
							| 111 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 112 |  | seqex | ⊢ seq 0 (  +  ,  𝐺 )  ∈  V | 
						
							| 113 |  | climres | ⊢ ( ( 1  ∈  ℤ  ∧  seq 0 (  +  ,  𝐺 )  ∈  V )  →  ( ( seq 0 (  +  ,  𝐺 )  ↾  ( ℤ≥ ‘ 1 ) )  ⇝  𝐴  ↔  seq 0 (  +  ,  𝐺 )  ⇝  𝐴 ) ) | 
						
							| 114 | 111 112 113 | mp2an | ⊢ ( ( seq 0 (  +  ,  𝐺 )  ↾  ( ℤ≥ ‘ 1 ) )  ⇝  𝐴  ↔  seq 0 (  +  ,  𝐺 )  ⇝  𝐴 ) | 
						
							| 115 | 110 114 | bitr3i | ⊢ ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  𝐴  ↔  seq 0 (  +  ,  𝐺 )  ⇝  𝐴 ) | 
						
							| 116 | 23 42 115 | 3bitri | ⊢ ( seq 0 (  +  ,  𝐹 )  ⇝  𝐴  ↔  seq 0 (  +  ,  𝐺 )  ⇝  𝐴 ) |