| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leibpi.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 2 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 3 |  | 0zd | ⊢ ( ⊤  →  0  ∈  ℤ ) | 
						
							| 4 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 5 |  | 0cnd | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) )  →  0  ∈  ℂ ) | 
						
							| 6 |  | ioran | ⊢ ( ¬  ( 𝑘  =  0  ∨  2  ∥  𝑘 )  ↔  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) ) | 
						
							| 7 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 8 |  | leibpilem1 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( 𝑘  ∈  ℕ  ∧  ( ( 𝑘  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( 𝑘  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 10 |  | reexpcl | ⊢ ( ( - 1  ∈  ℝ  ∧  ( ( 𝑘  −  1 )  /  2 )  ∈  ℕ0 )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ∈  ℝ ) | 
						
							| 11 | 7 9 10 | sylancr | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ∈  ℝ ) | 
						
							| 12 | 8 | simpld | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 13 | 11 12 | nndivred | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ∈  ℂ ) | 
						
							| 15 | 6 14 | sylan2b | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ¬  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ∈  ℂ ) | 
						
							| 16 | 5 15 | ifclda | ⊢ ( 𝑘  ∈  ℕ0  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 18 | 17 | fmpttd | ⊢ ( ⊤  →  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 19 | 18 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 20 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 21 | 20 | a1i | ⊢ ( ⊤  →  2  ∈  ℕ0 ) | 
						
							| 22 |  | nn0mulcl | ⊢ ( ( 2  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 23 | 21 22 | sylan | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ0 )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 24 |  | nn0p1nn | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ0 )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 26 | 25 | nnrecred | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ0 )  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℝ ) | 
						
							| 27 | 26 | fmpttd | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) : ℕ0 ⟶ ℝ ) | 
						
							| 28 |  | nn0mulcl | ⊢ ( ( 2  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 29 | 21 28 | sylan | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 30 | 29 | nn0red | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  𝑘 )  ∈  ℝ ) | 
						
							| 31 |  | peano2nn0 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 33 |  | nn0mulcl | ⊢ ( ( 2  ∈  ℕ0  ∧  ( 𝑘  +  1 )  ∈  ℕ0 )  →  ( 2  ·  ( 𝑘  +  1 ) )  ∈  ℕ0 ) | 
						
							| 34 | 20 32 33 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  ( 𝑘  +  1 ) )  ∈  ℕ0 ) | 
						
							| 35 | 34 | nn0red | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 36 |  | 1red | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  1  ∈  ℝ ) | 
						
							| 37 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 39 | 38 | lep1d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ≤  ( 𝑘  +  1 ) ) | 
						
							| 40 |  | peano2re | ⊢ ( 𝑘  ∈  ℝ  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 41 | 38 40 | syl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 42 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 43 | 42 | a1i | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  2  ∈  ℝ ) | 
						
							| 44 |  | 2pos | ⊢ 0  <  2 | 
						
							| 45 | 44 | a1i | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  0  <  2 ) | 
						
							| 46 |  | lemul2 | ⊢ ( ( 𝑘  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝑘  ≤  ( 𝑘  +  1 )  ↔  ( 2  ·  𝑘 )  ≤  ( 2  ·  ( 𝑘  +  1 ) ) ) ) | 
						
							| 47 | 38 41 43 45 46 | syl112anc | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ≤  ( 𝑘  +  1 )  ↔  ( 2  ·  𝑘 )  ≤  ( 2  ·  ( 𝑘  +  1 ) ) ) ) | 
						
							| 48 | 39 47 | mpbid | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  𝑘 )  ≤  ( 2  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 49 | 30 35 36 48 | leadd1dd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ≤  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) | 
						
							| 50 |  | nn0p1nn | ⊢ ( ( 2  ·  𝑘 )  ∈  ℕ0  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ ) | 
						
							| 51 | 29 50 | syl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ ) | 
						
							| 52 | 51 | nnred | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 53 | 51 | nngt0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  0  <  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 54 |  | nn0p1nn | ⊢ ( ( 2  ·  ( 𝑘  +  1 ) )  ∈  ℕ0  →  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 )  ∈  ℕ ) | 
						
							| 55 | 34 54 | syl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 )  ∈  ℕ ) | 
						
							| 56 | 55 | nnred | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 )  ∈  ℝ ) | 
						
							| 57 | 55 | nngt0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  0  <  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) | 
						
							| 58 |  | lerec | ⊢ ( ( ( ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ  ∧  0  <  ( ( 2  ·  𝑘 )  +  1 ) )  ∧  ( ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 )  ∈  ℝ  ∧  0  <  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) )  →  ( ( ( 2  ·  𝑘 )  +  1 )  ≤  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 )  ↔  ( 1  /  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) )  ≤  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 59 | 52 53 56 57 58 | syl22anc | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 2  ·  𝑘 )  +  1 )  ≤  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 )  ↔  ( 1  /  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) )  ≤  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 60 | 49 59 | mpbid | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( 1  /  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) )  ≤  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 61 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 2  ·  𝑛 )  =  ( 2  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( ( 2  ·  𝑛 )  +  1 )  =  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) ) | 
						
							| 64 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 65 |  | ovex | ⊢ ( 1  /  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) )  ∈  V | 
						
							| 66 | 63 64 65 | fvmpt | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( 1  /  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) ) | 
						
							| 67 | 32 66 | syl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( 1  /  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 2  ·  𝑛 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( 𝑛  =  𝑘  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 71 |  | ovex | ⊢ ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  V | 
						
							| 72 | 70 64 71 | fvmpt | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 74 | 60 67 73 | 3brtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ ( 𝑘  +  1 ) )  ≤  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 ) ) | 
						
							| 75 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 76 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 77 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 78 |  | divcnv | ⊢ ( 1  ∈  ℂ  →  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) )  ⇝  0 ) | 
						
							| 79 | 77 78 | mp1i | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) )  ⇝  0 ) | 
						
							| 80 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 81 | 80 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  ∈  V | 
						
							| 82 | 81 | a1i | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  ∈  V ) | 
						
							| 83 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 1  /  𝑛 )  =  ( 1  /  𝑘 ) ) | 
						
							| 84 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) | 
						
							| 85 |  | ovex | ⊢ ( 1  /  𝑘 )  ∈  V | 
						
							| 86 | 83 84 85 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 )  =  ( 1  /  𝑘 ) ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 )  =  ( 1  /  𝑘 ) ) | 
						
							| 88 |  | nnrecre | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 90 | 87 89 | eqeltrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 91 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 93 | 92 72 | syl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 94 | 91 51 | sylan2 | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ ) | 
						
							| 95 | 94 | nnrecred | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ ) | 
						
							| 96 | 93 95 | eqeltrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 97 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℝ ) | 
						
							| 99 | 20 92 28 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 100 | 99 | nn0red | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℝ ) | 
						
							| 101 |  | peano2re | ⊢ ( ( 2  ·  𝑘 )  ∈  ℝ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 102 | 100 101 | syl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 103 |  | nn0addge1 | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ≤  ( 𝑘  +  𝑘 ) ) | 
						
							| 104 | 98 92 103 | syl2anc | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ≤  ( 𝑘  +  𝑘 ) ) | 
						
							| 105 | 98 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 106 | 105 | 2timesd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  =  ( 𝑘  +  𝑘 ) ) | 
						
							| 107 | 104 106 | breqtrrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ≤  ( 2  ·  𝑘 ) ) | 
						
							| 108 | 100 | lep1d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ≤  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 109 | 98 100 102 107 108 | letrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ≤  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 110 |  | nngt0 | ⊢ ( 𝑘  ∈  ℕ  →  0  <  𝑘 ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  <  𝑘 ) | 
						
							| 112 | 94 | nnred | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 113 | 94 | nngt0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  <  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 114 |  | lerec | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  0  <  𝑘 )  ∧  ( ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ  ∧  0  <  ( ( 2  ·  𝑘 )  +  1 ) ) )  →  ( 𝑘  ≤  ( ( 2  ·  𝑘 )  +  1 )  ↔  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ≤  ( 1  /  𝑘 ) ) ) | 
						
							| 115 | 98 111 112 113 114 | syl22anc | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ≤  ( ( 2  ·  𝑘 )  +  1 )  ↔  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ≤  ( 1  /  𝑘 ) ) ) | 
						
							| 116 | 109 115 | mpbid | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ≤  ( 1  /  𝑘 ) ) | 
						
							| 117 | 116 93 87 | 3brtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 ) ) | 
						
							| 118 | 94 | nnrpd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ+ ) | 
						
							| 119 | 118 | rpreccld | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 120 | 119 | rpge0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 121 | 120 93 | breqtrrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 ) ) | 
						
							| 122 | 75 76 79 82 90 96 117 121 | climsqz2 | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  ⇝  0 ) | 
						
							| 123 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 124 | 123 | a1i | ⊢ ( ⊤  →  - 1  ∈  ℂ ) | 
						
							| 125 |  | expcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 126 | 124 125 | sylan | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 127 | 51 | nncnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℂ ) | 
						
							| 128 | 51 | nnne0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ≠  0 ) | 
						
							| 129 | 126 127 128 | divrecd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( - 1 ↑ 𝑘 )  ·  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 130 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( - 1 ↑ 𝑛 )  =  ( - 1 ↑ 𝑘 ) ) | 
						
							| 131 | 130 69 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 132 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 133 |  | ovex | ⊢ ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  V | 
						
							| 134 | 131 132 133 | fvmpt | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 )  =  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 )  =  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 136 | 73 | oveq2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( - 1 ↑ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 ) )  =  ( ( - 1 ↑ 𝑘 )  ·  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 137 | 129 135 136 | 3eqtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 )  =  ( ( - 1 ↑ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ0  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 138 | 2 3 27 74 122 137 | iseralt | ⊢ ( ⊤  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 139 |  | climdm | ⊢ ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ∈  dom   ⇝   ↔  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) ) | 
						
							| 140 | 138 139 | sylib | ⊢ ( ⊤  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) ) | 
						
							| 141 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) | 
						
							| 142 |  | fvex | ⊢ (  ⇝  ‘ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) )  ∈  V | 
						
							| 143 | 132 141 142 | leibpilem2 | ⊢ ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) )  ↔  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) ) | 
						
							| 144 | 140 143 | sylib | ⊢ ( ⊤  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) ) | 
						
							| 145 |  | seqex | ⊢ seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ∈  V | 
						
							| 146 | 145 142 | breldm | ⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 147 | 144 146 | syl | ⊢ ( ⊤  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 148 | 2 3 4 19 147 | isumclim2 | ⊢ ( ⊤  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 149 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) ) | 
						
							| 150 | 18 147 149 | abelth2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) )  ∈  ( ( 0 [,] 1 ) –cn→ ℂ ) ) | 
						
							| 151 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 152 | 151 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ+ ) | 
						
							| 153 | 152 | rpreccld | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 154 | 153 | rpred | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 155 | 153 | rpge0d | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( 1  /  𝑛 ) ) | 
						
							| 156 |  | nnge1 | ⊢ ( 𝑛  ∈  ℕ  →  1  ≤  𝑛 ) | 
						
							| 157 | 156 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  1  ≤  𝑛 ) | 
						
							| 158 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 159 | 158 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ ) | 
						
							| 160 | 159 | recnd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 161 | 160 | mulridd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  ·  1 )  =  𝑛 ) | 
						
							| 162 | 157 161 | breqtrrd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  1  ≤  ( 𝑛  ·  1 ) ) | 
						
							| 163 |  | 1red | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 164 |  | nngt0 | ⊢ ( 𝑛  ∈  ℕ  →  0  <  𝑛 ) | 
						
							| 165 | 164 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  0  <  𝑛 ) | 
						
							| 166 |  | ledivmul | ⊢ ( ( 1  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  ( ( 1  /  𝑛 )  ≤  1  ↔  1  ≤  ( 𝑛  ·  1 ) ) ) | 
						
							| 167 | 163 163 159 165 166 | syl112anc | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( ( 1  /  𝑛 )  ≤  1  ↔  1  ≤  ( 𝑛  ·  1 ) ) ) | 
						
							| 168 | 162 167 | mpbird | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ≤  1 ) | 
						
							| 169 |  | elicc01 | ⊢ ( ( 1  /  𝑛 )  ∈  ( 0 [,] 1 )  ↔  ( ( 1  /  𝑛 )  ∈  ℝ  ∧  0  ≤  ( 1  /  𝑛 )  ∧  ( 1  /  𝑛 )  ≤  1 ) ) | 
						
							| 170 | 154 155 168 169 | syl3anbrc | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 171 |  | iirev | ⊢ ( ( 1  /  𝑛 )  ∈  ( 0 [,] 1 )  →  ( 1  −  ( 1  /  𝑛 ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 172 | 170 171 | syl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  −  ( 1  /  𝑛 ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 173 | 172 | fmpttd | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) : ℕ ⟶ ( 0 [,] 1 ) ) | 
						
							| 174 |  | 1cnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 175 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 176 | 175 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) )  ∈  V | 
						
							| 177 | 176 | a1i | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) )  ∈  V ) | 
						
							| 178 | 90 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 179 | 83 | oveq2d | ⊢ ( 𝑛  =  𝑘  →  ( 1  −  ( 1  /  𝑛 ) )  =  ( 1  −  ( 1  /  𝑘 ) ) ) | 
						
							| 180 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) | 
						
							| 181 |  | ovex | ⊢ ( 1  −  ( 1  /  𝑘 ) )  ∈  V | 
						
							| 182 | 179 180 181 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) ‘ 𝑘 )  =  ( 1  −  ( 1  /  𝑘 ) ) ) | 
						
							| 183 | 86 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  −  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 ) )  =  ( 1  −  ( 1  /  𝑘 ) ) ) | 
						
							| 184 | 182 183 | eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) ‘ 𝑘 )  =  ( 1  −  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 ) ) ) | 
						
							| 185 | 184 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) ‘ 𝑘 )  =  ( 1  −  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 ) ) ) | 
						
							| 186 | 75 76 79 174 177 178 185 | climsubc2 | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) )  ⇝  ( 1  −  0 ) ) | 
						
							| 187 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 188 | 186 187 | breqtrdi | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) )  ⇝  1 ) | 
						
							| 189 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 190 | 189 | a1i | ⊢ ( ⊤  →  1  ∈  ( 0 [,] 1 ) ) | 
						
							| 191 | 75 76 150 173 188 190 | climcncf | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) )  ⇝  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) ) ‘ 1 ) ) | 
						
							| 192 |  | eqidd | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 193 |  | eqidd | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) )  =  ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) ) ) | 
						
							| 194 |  | oveq1 | ⊢ ( 𝑥  =  ( 1  −  ( 1  /  𝑛 ) )  →  ( 𝑥 ↑ 𝑗 )  =  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) | 
						
							| 195 | 194 | oveq2d | ⊢ ( 𝑥  =  ( 1  −  ( 1  /  𝑛 ) )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) ) | 
						
							| 196 | 195 | sumeq2sdv | ⊢ ( 𝑥  =  ( 1  −  ( 1  /  𝑛 ) )  →  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) )  =  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) ) | 
						
							| 197 | 172 192 193 196 | fmptco | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) ) ) | 
						
							| 198 |  | 0zd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  0  ∈  ℤ ) | 
						
							| 199 | 9 | adantll | ⊢ ( ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( 𝑘  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 200 | 7 199 10 | sylancr | ⊢ ( ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ∈  ℝ ) | 
						
							| 201 | 200 | recnd | ⊢ ( ( ( ⊤  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ∈  ℂ ) | 
						
							| 202 | 201 | adantllr | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ∈  ℂ ) | 
						
							| 203 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 204 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( 1  /  𝑛 )  ∈  ℝ )  →  ( 1  −  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 205 | 203 154 204 | sylancr | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  −  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 206 | 205 | ad2antrr | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( 1  −  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 207 |  | simplr | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 208 | 206 207 | reexpcld | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 209 | 208 | recnd | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 210 |  | nn0cn | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℂ ) | 
						
							| 211 | 210 | ad2antlr | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 212 | 12 | adantll | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 213 | 212 | nnne0d | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  𝑘  ≠  0 ) | 
						
							| 214 | 202 209 211 213 | div12d | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) )  =  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  ·  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) | 
						
							| 215 | 14 | adantll | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ∈  ℂ ) | 
						
							| 216 | 209 215 | mulcomd | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  ·  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  =  ( ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) | 
						
							| 217 | 214 216 | eqtrd | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) )  =  ( ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) | 
						
							| 218 | 6 217 | sylan2b | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) )  =  ( ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) | 
						
							| 219 | 218 | ifeq2da | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) ) | 
						
							| 220 | 205 | recnd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  −  ( 1  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 221 |  | expcl | ⊢ ( ( ( 1  −  ( 1  /  𝑛 ) )  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 222 | 220 221 | sylan | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 223 | 222 | mul02d | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  ( 0  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) )  =  0 ) | 
						
							| 224 | 223 | ifeq1d | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  ( 0  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ,  ( ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) ) | 
						
							| 225 | 219 224 | eqtr4d | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  ( 0  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ,  ( ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) ) | 
						
							| 226 |  | ovif | ⊢ ( if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  ( 0  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ,  ( ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) | 
						
							| 227 | 225 226 | eqtr4di | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  =  ( if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) | 
						
							| 228 |  | simpr | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 229 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 230 |  | ovex | ⊢ ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) )  ∈  V | 
						
							| 231 | 229 230 | ifex | ⊢ if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  ∈  V | 
						
							| 232 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 233 | 232 | fvmpt2 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  ∈  V )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 234 | 228 231 233 | sylancl | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 235 |  | ovex | ⊢ ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 )  ∈  V | 
						
							| 236 | 229 235 | ifex | ⊢ if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  ∈  V | 
						
							| 237 | 141 | fvmpt2 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  ∈  V )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) | 
						
							| 238 | 228 236 237 | sylancl | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) | 
						
							| 239 | 238 | oveq1d | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) )  =  ( if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) | 
						
							| 240 | 227 234 239 | 3eqtr4d | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) | 
						
							| 241 | 240 | ralrimiva | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) ) | 
						
							| 242 |  | nfv | ⊢ Ⅎ 𝑗 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) ) | 
						
							| 243 |  | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) | 
						
							| 244 |  | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) | 
						
							| 245 |  | nfcv | ⊢ Ⅎ 𝑘  · | 
						
							| 246 |  | nfcv | ⊢ Ⅎ 𝑘 ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) | 
						
							| 247 | 244 245 246 | nfov | ⊢ Ⅎ 𝑘 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) | 
						
							| 248 | 243 247 | nfeq | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) | 
						
							| 249 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 250 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 251 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  =  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) | 
						
							| 252 | 250 251 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) ) | 
						
							| 253 | 249 252 | eqeq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) )  ↔  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) ) ) | 
						
							| 254 | 242 248 253 | cbvralw | ⊢ ( ∀ 𝑘  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑘 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 ) )  ↔  ∀ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) ) | 
						
							| 255 | 241 254 | sylib | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) ) | 
						
							| 256 | 255 | r19.21bi | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) ) | 
						
							| 257 |  | 0cnd | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) )  →  0  ∈  ℂ ) | 
						
							| 258 | 208 212 | nndivred | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 )  ∈  ℝ ) | 
						
							| 259 | 258 | recnd | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 )  ∈  ℂ ) | 
						
							| 260 | 202 259 | mulcld | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ( ¬  𝑘  =  0  ∧  ¬  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 261 | 6 260 | sylan2b | ⊢ ( ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  ∧  ¬  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) )  →  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) )  ∈  ℂ ) | 
						
							| 262 | 257 261 | ifclda | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  ∈  ℂ ) | 
						
							| 263 | 262 | fmpttd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 264 | 263 | ffvelcdmda | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 265 | 256 264 | eqeltrrd | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑗  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) )  ∈  ℂ ) | 
						
							| 266 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 267 | 266 | a1i | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  0  ∈  ℕ0 ) | 
						
							| 268 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 269 |  | seqeq1 | ⊢ ( ( 0  +  1 )  =  1  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  =  seq 1 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) ) | 
						
							| 270 | 268 269 | ax-mp | ⊢ seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  =  seq 1 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) | 
						
							| 271 |  | 1zzd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℤ ) | 
						
							| 272 |  | elnnuz | ⊢ ( 𝑗  ∈  ℕ  ↔  𝑗  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 273 |  | nnne0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≠  0 ) | 
						
							| 274 | 273 | neneqd | ⊢ ( 𝑘  ∈  ℕ  →  ¬  𝑘  =  0 ) | 
						
							| 275 |  | biorf | ⊢ ( ¬  𝑘  =  0  →  ( 2  ∥  𝑘  ↔  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ) ) | 
						
							| 276 | 274 275 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ∥  𝑘  ↔  ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ) ) | 
						
							| 277 | 276 | bicomd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑘  =  0  ∨  2  ∥  𝑘 )  ↔  2  ∥  𝑘 ) ) | 
						
							| 278 | 277 | ifbid | ⊢ ( 𝑘  ∈  ℕ  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  =  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 279 | 91 231 233 | sylancl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 280 | 229 230 | ifex | ⊢ if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  ∈  V | 
						
							| 281 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) )  =  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 282 | 281 | fvmpt2 | ⊢ ( ( 𝑘  ∈  ℕ  ∧  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  ∈  V )  →  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 283 | 280 282 | mpan2 | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) | 
						
							| 284 | 278 279 283 | 3eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 ) ) | 
						
							| 285 | 284 | rgen | ⊢ ∀ 𝑘  ∈  ℕ ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 ) | 
						
							| 286 | 285 | a1i | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑘  ∈  ℕ ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 ) ) | 
						
							| 287 |  | nfv | ⊢ Ⅎ 𝑗 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 ) | 
						
							| 288 |  | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) | 
						
							| 289 | 243 288 | nfeq | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) | 
						
							| 290 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 291 | 249 290 | eqeq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  ↔  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 292 | 287 289 291 | cbvralw | ⊢ ( ∀ 𝑘  ∈  ℕ ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑘 )  ↔  ∀ 𝑗  ∈  ℕ ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 293 | 286 292 | sylib | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑗  ∈  ℕ ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 294 | 293 | r19.21bi | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 295 | 272 294 | sylan2br | ⊢ ( ( ( ⊤  ∧  𝑛  ∈  ℕ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 296 | 271 295 | seqfeq | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  =  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) ) | 
						
							| 297 | 154 163 168 | abssubge0d | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( abs ‘ ( 1  −  ( 1  /  𝑛 ) ) )  =  ( 1  −  ( 1  /  𝑛 ) ) ) | 
						
							| 298 |  | ltsubrp | ⊢ ( ( 1  ∈  ℝ  ∧  ( 1  /  𝑛 )  ∈  ℝ+ )  →  ( 1  −  ( 1  /  𝑛 ) )  <  1 ) | 
						
							| 299 | 203 153 298 | sylancr | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  −  ( 1  /  𝑛 ) )  <  1 ) | 
						
							| 300 | 297 299 | eqbrtrd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( abs ‘ ( 1  −  ( 1  /  𝑛 ) ) )  <  1 ) | 
						
							| 301 | 281 | atantayl2 | ⊢ ( ( ( 1  −  ( 1  /  𝑛 ) )  ∈  ℂ  ∧  ( abs ‘ ( 1  −  ( 1  /  𝑛 ) ) )  <  1 )  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  ⇝  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 302 | 220 300 301 | syl2anc | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  if ( 2  ∥  𝑘 ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  ⇝  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 303 | 296 302 | eqbrtrd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  ⇝  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 304 | 270 303 | eqbrtrid | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  seq ( 0  +  1 ) (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  ⇝  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 305 | 2 267 264 304 | clim2ser2 | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  ⇝  ( ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) ‘ 0 ) ) ) | 
						
							| 306 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 307 |  | seq1 | ⊢ ( 0  ∈  ℤ  →  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) ‘ 0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 0 ) ) | 
						
							| 308 | 306 307 | ax-mp | ⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) ‘ 0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 0 ) | 
						
							| 309 |  | iftrue | ⊢ ( ( 𝑘  =  0  ∨  2  ∥  𝑘 )  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  =  0 ) | 
						
							| 310 | 309 | orcs | ⊢ ( 𝑘  =  0  →  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) )  =  0 ) | 
						
							| 311 | 310 232 229 | fvmpt | ⊢ ( 0  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 0 )  =  0 ) | 
						
							| 312 | 266 311 | ax-mp | ⊢ ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ‘ 0 )  =  0 | 
						
							| 313 | 308 312 | eqtri | ⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) ‘ 0 )  =  0 | 
						
							| 314 | 313 | oveq2i | ⊢ ( ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) ‘ 0 ) )  =  ( ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) )  +  0 ) | 
						
							| 315 |  | atanrecl | ⊢ ( ( 1  −  ( 1  /  𝑛 ) )  ∈  ℝ  →  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 316 | 205 315 | syl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 317 | 316 | recnd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 318 | 317 | addridd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) )  +  0 )  =  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 319 | 314 318 | eqtrid | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) )  +  ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) ) ‘ 0 ) )  =  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 320 | 305 319 | breqtrd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  ·  ( ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑘 )  /  𝑘 ) ) ) ) )  ⇝  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 321 | 2 198 256 265 320 | isumclim | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) )  =  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 322 | 321 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( ( 1  −  ( 1  /  𝑛 ) ) ↑ 𝑗 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 323 | 197 322 | eqtrd | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) )  ∘  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 324 |  | oveq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥 ↑ 𝑗 )  =  ( 1 ↑ 𝑗 ) ) | 
						
							| 325 |  | nn0z | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ℤ ) | 
						
							| 326 |  | 1exp | ⊢ ( 𝑗  ∈  ℤ  →  ( 1 ↑ 𝑗 )  =  1 ) | 
						
							| 327 | 325 326 | syl | ⊢ ( 𝑗  ∈  ℕ0  →  ( 1 ↑ 𝑗 )  =  1 ) | 
						
							| 328 | 324 327 | sylan9eq | ⊢ ( ( 𝑥  =  1  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑥 ↑ 𝑗 )  =  1 ) | 
						
							| 329 | 328 | oveq2d | ⊢ ( ( 𝑥  =  1  ∧  𝑗  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) )  =  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  1 ) ) | 
						
							| 330 | 18 | mptru | ⊢ ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) : ℕ0 ⟶ ℂ | 
						
							| 331 | 330 | ffvelcdmi | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 332 | 331 | mulridd | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  1 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 333 | 332 | adantl | ⊢ ( ( 𝑥  =  1  ∧  𝑗  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  1 )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 334 | 329 333 | eqtrd | ⊢ ( ( 𝑥  =  1  ∧  𝑗  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) )  =  ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 335 | 334 | sumeq2dv | ⊢ ( 𝑥  =  1  →  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) )  =  Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 336 |  | sumex | ⊢ Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ∈  V | 
						
							| 337 | 335 149 336 | fvmpt | ⊢ ( 1  ∈  ( 0 [,] 1 )  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) ) ‘ 1 )  =  Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 338 | 189 337 | mp1i | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 0 [,] 1 )  ↦  Σ 𝑗  ∈  ℕ0 ( ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ·  ( 𝑥 ↑ 𝑗 ) ) ) ‘ 1 )  =  Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 339 | 191 323 338 | 3brtr3d | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) )  ⇝  Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 ) ) | 
						
							| 340 |  | eqid | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 341 |  | eqid | ⊢ { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) }  =  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } | 
						
							| 342 | 340 341 | atancn | ⊢ ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } )  ∈  ( { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } –cn→ ℂ ) | 
						
							| 343 | 342 | a1i | ⊢ ( ⊤  →  ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } )  ∈  ( { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } –cn→ ℂ ) ) | 
						
							| 344 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 345 | 340 341 | ressatans | ⊢ ℝ  ⊆  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } | 
						
							| 346 | 344 345 | sstri | ⊢ ( 0 [,] 1 )  ⊆  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } | 
						
							| 347 |  | fss | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) : ℕ ⟶ ( 0 [,] 1 )  ∧  ( 0 [,] 1 )  ⊆  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } )  →  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) : ℕ ⟶ { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) | 
						
							| 348 | 173 346 347 | sylancl | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) : ℕ ⟶ { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) | 
						
							| 349 | 345 203 | sselii | ⊢ 1  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } | 
						
							| 350 | 349 | a1i | ⊢ ( ⊤  →  1  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) | 
						
							| 351 | 75 76 343 348 188 350 | climcncf | ⊢ ( ⊤  →  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } )  ∘  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) )  ⇝  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) ‘ 1 ) ) | 
						
							| 352 | 346 172 | sselid | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  −  ( 1  /  𝑛 ) )  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) | 
						
							| 353 |  | cncff | ⊢ ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } )  ∈  ( { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } –cn→ ℂ )  →  ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) : { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ⟶ ℂ ) | 
						
							| 354 | 342 353 | mp1i | ⊢ ( ⊤  →  ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) : { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ⟶ ℂ ) | 
						
							| 355 | 354 | feqmptd | ⊢ ( ⊤  →  ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } )  =  ( 𝑘  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) }  ↦  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) ‘ 𝑘 ) ) ) | 
						
							| 356 |  | fvres | ⊢ ( 𝑘  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) }  →  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) ‘ 𝑘 )  =  ( arctan ‘ 𝑘 ) ) | 
						
							| 357 | 356 | mpteq2ia | ⊢ ( 𝑘  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) }  ↦  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) ‘ 𝑘 ) )  =  ( 𝑘  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) }  ↦  ( arctan ‘ 𝑘 ) ) | 
						
							| 358 | 355 357 | eqtrdi | ⊢ ( ⊤  →  ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } )  =  ( 𝑘  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) }  ↦  ( arctan ‘ 𝑘 ) ) ) | 
						
							| 359 |  | fveq2 | ⊢ ( 𝑘  =  ( 1  −  ( 1  /  𝑛 ) )  →  ( arctan ‘ 𝑘 )  =  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 360 | 352 192 358 359 | fmptco | ⊢ ( ⊤  →  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } )  ∘  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 361 |  | fvres | ⊢ ( 1  ∈  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) }  →  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) ‘ 1 )  =  ( arctan ‘ 1 ) ) | 
						
							| 362 | 349 361 | mp1i | ⊢ ( ⊤  →  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) ‘ 1 )  =  ( arctan ‘ 1 ) ) | 
						
							| 363 |  | atan1 | ⊢ ( arctan ‘ 1 )  =  ( π  /  4 ) | 
						
							| 364 | 362 363 | eqtrdi | ⊢ ( ⊤  →  ( ( arctan  ↾  { 𝑥  ∈  ℂ  ∣  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) } ) ‘ 1 )  =  ( π  /  4 ) ) | 
						
							| 365 | 351 360 364 | 3brtr3d | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) )  ⇝  ( π  /  4 ) ) | 
						
							| 366 |  | climuni | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) )  ⇝  Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( arctan ‘ ( 1  −  ( 1  /  𝑛 ) ) ) )  ⇝  ( π  /  4 ) )  →  Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  =  ( π  /  4 ) ) | 
						
							| 367 | 339 365 366 | syl2anc | ⊢ ( ⊤  →  Σ 𝑗  ∈  ℕ0 ( ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) ‘ 𝑗 )  =  ( π  /  4 ) ) | 
						
							| 368 | 148 367 | breqtrd | ⊢ ( ⊤  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  ( π  /  4 ) ) | 
						
							| 369 | 368 | mptru | ⊢ seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  ( π  /  4 ) | 
						
							| 370 |  | ovex | ⊢ ( π  /  4 )  ∈  V | 
						
							| 371 | 1 141 370 | leibpilem2 | ⊢ ( seq 0 (  +  ,  𝐹 )  ⇝  ( π  /  4 )  ↔  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  if ( ( 𝑘  =  0  ∨  2  ∥  𝑘 ) ,  0 ,  ( ( - 1 ↑ ( ( 𝑘  −  1 )  /  2 ) )  /  𝑘 ) ) ) )  ⇝  ( π  /  4 ) ) | 
						
							| 372 | 369 371 | mpbir | ⊢ seq 0 (  +  ,  𝐹 )  ⇝  ( π  /  4 ) |