| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 2 |  | 0zd | ⊢ ( ⊤  →  0  ∈  ℤ ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( - 1 ↑ 𝑘 )  =  ( - 1 ↑ 𝑛 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 2  ·  𝑘 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 6 | 3 5 | oveq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 8 |  | ovex | ⊢ ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  V | 
						
							| 9 | 6 7 8 | fvmpt | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ‘ 𝑛 )  =  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ‘ 𝑛 )  =  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 11 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 12 |  | reexpcl | ⊢ ( ( - 1  ∈  ℝ  ∧  𝑛  ∈  ℕ0 )  →  ( - 1 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 13 | 11 12 | mpan | ⊢ ( 𝑛  ∈  ℕ0  →  ( - 1 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 14 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 15 |  | nn0mulcl | ⊢ ( ( 2  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 16 | 14 15 | mpan | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 17 |  | nn0p1nn | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 19 | 13 18 | nndivred | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ0 )  →  ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 22 | 7 | leibpi | ⊢ seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) )  ⇝  ( π  /  4 ) | 
						
							| 23 | 22 | a1i | ⊢ ( ⊤  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( - 1 ↑ 𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) )  ⇝  ( π  /  4 ) ) | 
						
							| 24 | 1 2 10 21 23 | isumclim | ⊢ ( ⊤  →  Σ 𝑛  ∈  ℕ0 ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( π  /  4 ) ) | 
						
							| 25 | 24 | mptru | ⊢ Σ 𝑛  ∈  ℕ0 ( ( - 1 ↑ 𝑛 )  /  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( π  /  4 ) |