Metamath Proof Explorer


Theorem leibpisum

Description: The Leibniz formula for _pi . This version of leibpi looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Assertion leibpisum n01n2n+1=π4

Proof

Step Hyp Ref Expression
1 nn0uz 0=0
2 0zd 0
3 oveq2 k=n1k=1n
4 oveq2 k=n2k=2n
5 4 oveq1d k=n2k+1=2n+1
6 3 5 oveq12d k=n1k2k+1=1n2n+1
7 eqid k01k2k+1=k01k2k+1
8 ovex 1n2n+1V
9 6 7 8 fvmpt n0k01k2k+1n=1n2n+1
10 9 adantl n0k01k2k+1n=1n2n+1
11 neg1rr 1
12 reexpcl 1n01n
13 11 12 mpan n01n
14 2nn0 20
15 nn0mulcl 20n02n0
16 14 15 mpan n02n0
17 nn0p1nn 2n02n+1
18 16 17 syl n02n+1
19 13 18 nndivred n01n2n+1
20 19 recnd n01n2n+1
21 20 adantl n01n2n+1
22 7 leibpi seq0+k01k2k+1π4
23 22 a1i seq0+k01k2k+1π4
24 1 2 10 21 23 isumclim n01n2n+1=π4
25 24 mptru n01n2n+1=π4