Metamath Proof Explorer


Theorem log2cnv

Description: Using the Taylor series for arctan ( _i / 3 ) , produce a rapidly convergent series for log 2 . (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypothesis log2cnv.1 F=n0232n+19n
Assertion log2cnv seq0+Flog2

Proof

Step Hyp Ref Expression
1 log2cnv.1 F=n0232n+19n
2 nn0uz 0=0
3 0zd 0
4 2cn 2
5 ax-icn i
6 ine0 i0
7 4 5 6 divcli 2i
8 7 a1i 2i
9 3cn 3
10 3ne0 30
11 5 9 10 divcli i3
12 absdiv i330i3=i3
13 5 9 10 12 mp3an i3=i3
14 absi i=1
15 3re 3
16 0re 0
17 3pos 0<3
18 16 15 17 ltleii 03
19 absid 3033=3
20 15 18 19 mp2an 3=3
21 14 20 oveq12i i3=13
22 13 21 eqtri i3=13
23 1lt3 1<3
24 recgt1 30<31<313<1
25 15 17 24 mp2an 1<313<1
26 23 25 mpbi 13<1
27 22 26 eqbrtri i3<1
28 eqid n01ni32n+12n+1=n01ni32n+12n+1
29 28 atantayl3 i3i3<1seq0+n01ni32n+12n+1arctani3
30 11 27 29 mp2an seq0+n01ni32n+12n+1arctani3
31 30 a1i seq0+n01ni32n+12n+1arctani3
32 oveq2 n=k1n=1k
33 oveq2 n=k2n=2k
34 33 oveq1d n=k2n+1=2k+1
35 34 oveq2d n=ki32n+1=i32k+1
36 35 34 oveq12d n=ki32n+12n+1=i32k+12k+1
37 32 36 oveq12d n=k1ni32n+12n+1=1ki32k+12k+1
38 ovex 1ki32k+12k+1V
39 37 28 38 fvmpt k0n01ni32n+12n+1k=1ki32k+12k+1
40 5 a1i k0i
41 9 a1i k03
42 10 a1i k030
43 2nn0 20
44 nn0mulcl 20k02k0
45 43 44 mpan k02k0
46 peano2nn0 2k02k+10
47 45 46 syl k02k+10
48 40 41 42 47 expdivd k0i32k+1=i2k+132k+1
49 48 oveq2d k01ki32k+1=1ki2k+132k+1
50 neg1cn 1
51 expcl 1k01k
52 50 51 mpan k01k
53 expcl i2k+10i2k+1
54 5 47 53 sylancr k0i2k+1
55 3nn 3
56 nnexpcl 32k+1032k+1
57 55 47 56 sylancr k032k+1
58 57 nncnd k032k+1
59 57 nnne0d k032k+10
60 52 54 58 59 divassd k01ki2k+132k+1=1ki2k+132k+1
61 expp1 i2k0i2k+1=i2ki
62 5 45 61 sylancr k0i2k+1=i2ki
63 expmul i20k0i2k=i2k
64 5 43 63 mp3an12 k0i2k=i2k
65 i2 i2=1
66 65 oveq1i i2k=1k
67 64 66 eqtrdi k0i2k=1k
68 67 oveq1d k0i2ki=1ki
69 62 68 eqtrd k0i2k+1=1ki
70 69 oveq2d k01ki2k+1=1k1ki
71 52 52 40 mulassd k01k1ki=1k1ki
72 50 a1i k01
73 id k0k0
74 72 73 73 expaddd k01k+k=1k1k
75 expmul 120k012k=-12k
76 50 43 75 mp3an12 k012k=-12k
77 neg1sqe1 12=1
78 77 oveq1i -12k=1k
79 76 78 eqtrdi k012k=1k
80 nn0cn k0k
81 80 2timesd k02k=k+k
82 81 oveq2d k012k=1k+k
83 nn0z k0k
84 1exp k1k=1
85 83 84 syl k01k=1
86 79 82 85 3eqtr3d k01k+k=1
87 74 86 eqtr3d k01k1k=1
88 87 oveq1d k01k1ki=1i
89 5 mullidi 1i=i
90 88 89 eqtrdi k01k1ki=i
91 70 71 90 3eqtr2d k01ki2k+1=i
92 91 oveq1d k01ki2k+132k+1=i32k+1
93 49 60 92 3eqtr2d k01ki32k+1=i32k+1
94 93 oveq1d k01ki32k+12k+1=i32k+12k+1
95 expcl i32k+10i32k+1
96 11 47 95 sylancr k0i32k+1
97 nn0p1nn 2k02k+1
98 45 97 syl k02k+1
99 98 nncnd k02k+1
100 98 nnne0d k02k+10
101 52 96 99 100 divassd k01ki32k+12k+1=1ki32k+12k+1
102 40 58 99 59 100 divdiv1d k0i32k+12k+1=i32k+12k+1
103 94 101 102 3eqtr3d k01ki32k+12k+1=i32k+12k+1
104 58 99 mulcomd k032k+12k+1=2k+132k+1
105 104 oveq2d k0i32k+12k+1=i2k+132k+1
106 39 103 105 3eqtrd k0n01ni32n+12n+1k=i2k+132k+1
107 98 57 nnmulcld k02k+132k+1
108 107 nncnd k02k+132k+1
109 107 nnne0d k02k+132k+10
110 40 108 109 divcld k0i2k+132k+1
111 106 110 eqeltrd k0n01ni32n+12n+1k
112 111 adantl k0n01ni32n+12n+1k
113 34 oveq2d n=k32n+1=32k+1
114 oveq2 n=k9n=9k
115 113 114 oveq12d n=k32n+19n=32k+19k
116 115 oveq2d n=k232n+19n=232k+19k
117 ovex 232k+19kV
118 116 1 117 fvmpt k0Fk=232k+19k
119 expp1 32k032k+1=32k3
120 9 45 119 sylancr k032k+1=32k3
121 expmul 320k032k=32k
122 9 43 121 mp3an12 k032k=32k
123 sq3 32=9
124 123 oveq1i 32k=9k
125 122 124 eqtrdi k032k=9k
126 125 oveq1d k032k3=9k3
127 9nn 9
128 nnexpcl 9k09k
129 127 128 mpan k09k
130 129 nncnd k09k
131 mulcom 9k39k3=39k
132 130 9 131 sylancl k09k3=39k
133 120 126 132 3eqtrd k032k+1=39k
134 91 133 oveq12d k01ki2k+132k+1=i39k
135 49 60 134 3eqtr2d k01ki32k+1=i39k
136 135 oveq1d k01ki32k+12k+1=i39k2k+1
137 nnmulcl 39k39k
138 55 129 137 sylancr k039k
139 138 nncnd k039k
140 138 nnne0d k039k0
141 40 139 99 140 100 divdiv1d k0i39k2k+1=i39k2k+1
142 136 101 141 3eqtr3d k01ki32k+12k+1=i39k2k+1
143 41 130 99 mul32d k039k2k+1=32k+19k
144 143 oveq2d k0i39k2k+1=i32k+19k
145 39 142 144 3eqtrd k0n01ni32n+12n+1k=i32k+19k
146 145 oveq2d k02in01ni32n+12n+1k=2ii32k+19k
147 nnmulcl 32k+132k+1
148 55 98 147 sylancr k032k+1
149 148 129 nnmulcld k032k+19k
150 149 nncnd k032k+19k
151 149 nnne0d k032k+19k0
152 40 150 151 divcld k0i32k+19k
153 mulcom i32k+19k2ii32k+19k2i=2ii32k+19k
154 152 7 153 sylancl k0i32k+19k2i=2ii32k+19k
155 4 a1i k02
156 6 a1i k0i0
157 155 40 150 156 151 dmdcand k0i32k+19k2i=232k+19k
158 146 154 157 3eqtr2d k02in01ni32n+12n+1k=232k+19k
159 118 158 eqtr4d k0Fk=2in01ni32n+12n+1k
160 159 adantl k0Fk=2in01ni32n+12n+1k
161 2 3 8 31 112 160 isermulc2 seq0+F2iarctani3
162 161 mptru seq0+F2iarctani3
163 bndatandm i3i3<1i3domarctan
164 11 27 163 mp2an i3domarctan
165 atanval i3domarctanarctani3=i2log1ii3log1+ii3
166 164 165 ax-mp arctani3=i2log1ii3log1+ii3
167 df-4 4=3+1
168 167 oveq1i 43=3+13
169 ax-1cn 1
170 9 169 9 10 divdiri 3+13=33+13
171 9 10 dividi 33=1
172 171 oveq1i 33+13=1+13
173 168 170 172 3eqtri 43=1+13
174 169 9 10 divcli 13
175 169 174 subnegi 113=1+13
176 divneg 133013=13
177 169 9 10 176 mp3an 13=13
178 ixi ii=1
179 178 oveq1i ii3=13
180 5 5 9 10 divassi ii3=ii3
181 177 179 180 3eqtr2i 13=ii3
182 181 oveq2i 113=1ii3
183 173 175 182 3eqtr2ri 1ii3=43
184 183 fveq2i log1ii3=log43
185 9 10 pm3.2i 330
186 divsubdir 31330313=3313
187 9 169 185 186 mp3an 313=3313
188 3m1e2 31=2
189 188 oveq1i 313=23
190 171 oveq1i 3313=113
191 187 189 190 3eqtr3i 23=113
192 169 174 negsubi 1+13=113
193 181 oveq2i 1+13=1+ii3
194 191 192 193 3eqtr2ri 1+ii3=23
195 194 fveq2i log1+ii3=log23
196 184 195 oveq12i log1ii3log1+ii3=log43log23
197 4re 4
198 4pos 0<4
199 197 198 elrpii 4+
200 3rp 3+
201 rpdivcl 4+3+43+
202 199 200 201 mp2an 43+
203 2rp 2+
204 rpdivcl 2+3+23+
205 203 200 204 mp2an 23+
206 relogdiv 43+23+log4323=log43log23
207 202 205 206 mp2an log4323=log43log23
208 4cn 4
209 2cnne0 220
210 divcan7 42203304323=42
211 208 209 185 210 mp3an 4323=42
212 4d2e2 42=2
213 211 212 eqtri 4323=2
214 213 fveq2i log4323=log2
215 196 207 214 3eqtr2i log1ii3log1+ii3=log2
216 215 oveq2i i2log1ii3log1+ii3=i2log2
217 166 216 eqtri arctani3=i2log2
218 217 oveq2i 2iarctani3=2ii2log2
219 2ne0 20
220 5 4 219 divcli i2
221 logcl 220log2
222 4 219 221 mp2an log2
223 7 220 222 mulassi 2ii2log2=2ii2log2
224 218 223 eqtr4i 2iarctani3=2ii2log2
225 divcan6 220ii02ii2=1
226 4 219 5 6 225 mp4an 2ii2=1
227 226 oveq1i 2ii2log2=1log2
228 222 mullidi 1log2=log2
229 224 227 228 3eqtri 2iarctani3=log2
230 162 229 breqtri seq0+Flog2