| Step |
Hyp |
Ref |
Expression |
| 1 |
|
log2cnv.1 |
|- F = ( n e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) |
| 2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 3 |
|
0zd |
|- ( T. -> 0 e. ZZ ) |
| 4 |
|
2cn |
|- 2 e. CC |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
|
ine0 |
|- _i =/= 0 |
| 7 |
4 5 6
|
divcli |
|- ( 2 / _i ) e. CC |
| 8 |
7
|
a1i |
|- ( T. -> ( 2 / _i ) e. CC ) |
| 9 |
|
3cn |
|- 3 e. CC |
| 10 |
|
3ne0 |
|- 3 =/= 0 |
| 11 |
5 9 10
|
divcli |
|- ( _i / 3 ) e. CC |
| 12 |
|
absdiv |
|- ( ( _i e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( abs ` ( _i / 3 ) ) = ( ( abs ` _i ) / ( abs ` 3 ) ) ) |
| 13 |
5 9 10 12
|
mp3an |
|- ( abs ` ( _i / 3 ) ) = ( ( abs ` _i ) / ( abs ` 3 ) ) |
| 14 |
|
absi |
|- ( abs ` _i ) = 1 |
| 15 |
|
3re |
|- 3 e. RR |
| 16 |
|
0re |
|- 0 e. RR |
| 17 |
|
3pos |
|- 0 < 3 |
| 18 |
16 15 17
|
ltleii |
|- 0 <_ 3 |
| 19 |
|
absid |
|- ( ( 3 e. RR /\ 0 <_ 3 ) -> ( abs ` 3 ) = 3 ) |
| 20 |
15 18 19
|
mp2an |
|- ( abs ` 3 ) = 3 |
| 21 |
14 20
|
oveq12i |
|- ( ( abs ` _i ) / ( abs ` 3 ) ) = ( 1 / 3 ) |
| 22 |
13 21
|
eqtri |
|- ( abs ` ( _i / 3 ) ) = ( 1 / 3 ) |
| 23 |
|
1lt3 |
|- 1 < 3 |
| 24 |
|
recgt1 |
|- ( ( 3 e. RR /\ 0 < 3 ) -> ( 1 < 3 <-> ( 1 / 3 ) < 1 ) ) |
| 25 |
15 17 24
|
mp2an |
|- ( 1 < 3 <-> ( 1 / 3 ) < 1 ) |
| 26 |
23 25
|
mpbi |
|- ( 1 / 3 ) < 1 |
| 27 |
22 26
|
eqbrtri |
|- ( abs ` ( _i / 3 ) ) < 1 |
| 28 |
|
eqid |
|- ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
| 29 |
28
|
atantayl3 |
|- ( ( ( _i / 3 ) e. CC /\ ( abs ` ( _i / 3 ) ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) ) |
| 30 |
11 27 29
|
mp2an |
|- seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) |
| 31 |
30
|
a1i |
|- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) ) |
| 32 |
|
oveq2 |
|- ( n = k -> ( -u 1 ^ n ) = ( -u 1 ^ k ) ) |
| 33 |
|
oveq2 |
|- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
| 34 |
33
|
oveq1d |
|- ( n = k -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 35 |
34
|
oveq2d |
|- ( n = k -> ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) = ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) |
| 36 |
35 34
|
oveq12d |
|- ( n = k -> ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) = ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 37 |
32 36
|
oveq12d |
|- ( n = k -> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 38 |
|
ovex |
|- ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) e. _V |
| 39 |
37 28 38
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 40 |
5
|
a1i |
|- ( k e. NN0 -> _i e. CC ) |
| 41 |
9
|
a1i |
|- ( k e. NN0 -> 3 e. CC ) |
| 42 |
10
|
a1i |
|- ( k e. NN0 -> 3 =/= 0 ) |
| 43 |
|
2nn0 |
|- 2 e. NN0 |
| 44 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
| 45 |
43 44
|
mpan |
|- ( k e. NN0 -> ( 2 x. k ) e. NN0 ) |
| 46 |
|
peano2nn0 |
|- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
| 47 |
45 46
|
syl |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
| 48 |
40 41 42 47
|
expdivd |
|- ( k e. NN0 -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 49 |
48
|
oveq2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 50 |
|
neg1cn |
|- -u 1 e. CC |
| 51 |
|
expcl |
|- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
| 52 |
50 51
|
mpan |
|- ( k e. NN0 -> ( -u 1 ^ k ) e. CC ) |
| 53 |
|
expcl |
|- ( ( _i e. CC /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( _i ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 54 |
5 47 53
|
sylancr |
|- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 55 |
|
3nn |
|- 3 e. NN |
| 56 |
|
nnexpcl |
|- ( ( 3 e. NN /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. NN ) |
| 57 |
55 47 56
|
sylancr |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. NN ) |
| 58 |
57
|
nncnd |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 59 |
57
|
nnne0d |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) =/= 0 ) |
| 60 |
52 54 58 59
|
divassd |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 61 |
|
expp1 |
|- ( ( _i e. CC /\ ( 2 x. k ) e. NN0 ) -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( 2 x. k ) ) x. _i ) ) |
| 62 |
5 45 61
|
sylancr |
|- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( 2 x. k ) ) x. _i ) ) |
| 63 |
|
expmul |
|- ( ( _i e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( _i ^ ( 2 x. k ) ) = ( ( _i ^ 2 ) ^ k ) ) |
| 64 |
5 43 63
|
mp3an12 |
|- ( k e. NN0 -> ( _i ^ ( 2 x. k ) ) = ( ( _i ^ 2 ) ^ k ) ) |
| 65 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 66 |
65
|
oveq1i |
|- ( ( _i ^ 2 ) ^ k ) = ( -u 1 ^ k ) |
| 67 |
64 66
|
eqtrdi |
|- ( k e. NN0 -> ( _i ^ ( 2 x. k ) ) = ( -u 1 ^ k ) ) |
| 68 |
67
|
oveq1d |
|- ( k e. NN0 -> ( ( _i ^ ( 2 x. k ) ) x. _i ) = ( ( -u 1 ^ k ) x. _i ) ) |
| 69 |
62 68
|
eqtrd |
|- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ k ) x. _i ) ) |
| 70 |
69
|
oveq2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( -u 1 ^ k ) x. _i ) ) ) |
| 71 |
52 52 40
|
mulassd |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = ( ( -u 1 ^ k ) x. ( ( -u 1 ^ k ) x. _i ) ) ) |
| 72 |
50
|
a1i |
|- ( k e. NN0 -> -u 1 e. CC ) |
| 73 |
|
id |
|- ( k e. NN0 -> k e. NN0 ) |
| 74 |
72 73 73
|
expaddd |
|- ( k e. NN0 -> ( -u 1 ^ ( k + k ) ) = ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) ) |
| 75 |
|
expmul |
|- ( ( -u 1 e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( -u 1 ^ ( 2 x. k ) ) = ( ( -u 1 ^ 2 ) ^ k ) ) |
| 76 |
50 43 75
|
mp3an12 |
|- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( ( -u 1 ^ 2 ) ^ k ) ) |
| 77 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
| 78 |
77
|
oveq1i |
|- ( ( -u 1 ^ 2 ) ^ k ) = ( 1 ^ k ) |
| 79 |
76 78
|
eqtrdi |
|- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( 1 ^ k ) ) |
| 80 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 81 |
80
|
2timesd |
|- ( k e. NN0 -> ( 2 x. k ) = ( k + k ) ) |
| 82 |
81
|
oveq2d |
|- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( -u 1 ^ ( k + k ) ) ) |
| 83 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
| 84 |
|
1exp |
|- ( k e. ZZ -> ( 1 ^ k ) = 1 ) |
| 85 |
83 84
|
syl |
|- ( k e. NN0 -> ( 1 ^ k ) = 1 ) |
| 86 |
79 82 85
|
3eqtr3d |
|- ( k e. NN0 -> ( -u 1 ^ ( k + k ) ) = 1 ) |
| 87 |
74 86
|
eqtr3d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) = 1 ) |
| 88 |
87
|
oveq1d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = ( 1 x. _i ) ) |
| 89 |
5
|
mullidi |
|- ( 1 x. _i ) = _i |
| 90 |
88 89
|
eqtrdi |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = _i ) |
| 91 |
70 71 90
|
3eqtr2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) = _i ) |
| 92 |
91
|
oveq1d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 93 |
49 60 92
|
3eqtr2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 94 |
93
|
oveq1d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 95 |
|
expcl |
|- ( ( ( _i / 3 ) e. CC /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 96 |
11 47 95
|
sylancr |
|- ( k e. NN0 -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 97 |
|
nn0p1nn |
|- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 98 |
45 97
|
syl |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 99 |
98
|
nncnd |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 100 |
98
|
nnne0d |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) =/= 0 ) |
| 101 |
52 96 99 100
|
divassd |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 102 |
40 58 99 59 100
|
divdiv1d |
|- ( k e. NN0 -> ( ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
| 103 |
94 101 102
|
3eqtr3d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
| 104 |
58 99
|
mulcomd |
|- ( k e. NN0 -> ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) = ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 105 |
104
|
oveq2d |
|- ( k e. NN0 -> ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 106 |
39 103 105
|
3eqtrd |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 107 |
98 57
|
nnmulcld |
|- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) e. NN ) |
| 108 |
107
|
nncnd |
|- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) e. CC ) |
| 109 |
107
|
nnne0d |
|- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) =/= 0 ) |
| 110 |
40 108 109
|
divcld |
|- ( k e. NN0 -> ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) e. CC ) |
| 111 |
106 110
|
eqeltrd |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) e. CC ) |
| 112 |
111
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) e. CC ) |
| 113 |
34
|
oveq2d |
|- ( n = k -> ( 3 x. ( ( 2 x. n ) + 1 ) ) = ( 3 x. ( ( 2 x. k ) + 1 ) ) ) |
| 114 |
|
oveq2 |
|- ( n = k -> ( 9 ^ n ) = ( 9 ^ k ) ) |
| 115 |
113 114
|
oveq12d |
|- ( n = k -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) = ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) |
| 116 |
115
|
oveq2d |
|- ( n = k -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 117 |
|
ovex |
|- ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. _V |
| 118 |
116 1 117
|
fvmpt |
|- ( k e. NN0 -> ( F ` k ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 119 |
|
expp1 |
|- ( ( 3 e. CC /\ ( 2 x. k ) e. NN0 ) -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( ( 3 ^ ( 2 x. k ) ) x. 3 ) ) |
| 120 |
9 45 119
|
sylancr |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( ( 3 ^ ( 2 x. k ) ) x. 3 ) ) |
| 121 |
|
expmul |
|- ( ( 3 e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( 3 ^ ( 2 x. k ) ) = ( ( 3 ^ 2 ) ^ k ) ) |
| 122 |
9 43 121
|
mp3an12 |
|- ( k e. NN0 -> ( 3 ^ ( 2 x. k ) ) = ( ( 3 ^ 2 ) ^ k ) ) |
| 123 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
| 124 |
123
|
oveq1i |
|- ( ( 3 ^ 2 ) ^ k ) = ( 9 ^ k ) |
| 125 |
122 124
|
eqtrdi |
|- ( k e. NN0 -> ( 3 ^ ( 2 x. k ) ) = ( 9 ^ k ) ) |
| 126 |
125
|
oveq1d |
|- ( k e. NN0 -> ( ( 3 ^ ( 2 x. k ) ) x. 3 ) = ( ( 9 ^ k ) x. 3 ) ) |
| 127 |
|
9nn |
|- 9 e. NN |
| 128 |
|
nnexpcl |
|- ( ( 9 e. NN /\ k e. NN0 ) -> ( 9 ^ k ) e. NN ) |
| 129 |
127 128
|
mpan |
|- ( k e. NN0 -> ( 9 ^ k ) e. NN ) |
| 130 |
129
|
nncnd |
|- ( k e. NN0 -> ( 9 ^ k ) e. CC ) |
| 131 |
|
mulcom |
|- ( ( ( 9 ^ k ) e. CC /\ 3 e. CC ) -> ( ( 9 ^ k ) x. 3 ) = ( 3 x. ( 9 ^ k ) ) ) |
| 132 |
130 9 131
|
sylancl |
|- ( k e. NN0 -> ( ( 9 ^ k ) x. 3 ) = ( 3 x. ( 9 ^ k ) ) ) |
| 133 |
120 126 132
|
3eqtrd |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( 3 x. ( 9 ^ k ) ) ) |
| 134 |
91 133
|
oveq12d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 x. ( 9 ^ k ) ) ) ) |
| 135 |
49 60 134
|
3eqtr2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 x. ( 9 ^ k ) ) ) ) |
| 136 |
135
|
oveq1d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( _i / ( 3 x. ( 9 ^ k ) ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 137 |
|
nnmulcl |
|- ( ( 3 e. NN /\ ( 9 ^ k ) e. NN ) -> ( 3 x. ( 9 ^ k ) ) e. NN ) |
| 138 |
55 129 137
|
sylancr |
|- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) e. NN ) |
| 139 |
138
|
nncnd |
|- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) e. CC ) |
| 140 |
138
|
nnne0d |
|- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) =/= 0 ) |
| 141 |
40 139 99 140 100
|
divdiv1d |
|- ( k e. NN0 -> ( ( _i / ( 3 x. ( 9 ^ k ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
| 142 |
136 101 141
|
3eqtr3d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
| 143 |
41 130 99
|
mul32d |
|- ( k e. NN0 -> ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) = ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) |
| 144 |
143
|
oveq2d |
|- ( k e. NN0 -> ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 145 |
39 142 144
|
3eqtrd |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 146 |
145
|
oveq2d |
|- ( k e. NN0 -> ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
| 147 |
|
nnmulcl |
|- ( ( 3 e. NN /\ ( ( 2 x. k ) + 1 ) e. NN ) -> ( 3 x. ( ( 2 x. k ) + 1 ) ) e. NN ) |
| 148 |
55 98 147
|
sylancr |
|- ( k e. NN0 -> ( 3 x. ( ( 2 x. k ) + 1 ) ) e. NN ) |
| 149 |
148 129
|
nnmulcld |
|- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) e. NN ) |
| 150 |
149
|
nncnd |
|- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) e. CC ) |
| 151 |
149
|
nnne0d |
|- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) =/= 0 ) |
| 152 |
40 150 151
|
divcld |
|- ( k e. NN0 -> ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. CC ) |
| 153 |
|
mulcom |
|- ( ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. CC /\ ( 2 / _i ) e. CC ) -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
| 154 |
152 7 153
|
sylancl |
|- ( k e. NN0 -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
| 155 |
4
|
a1i |
|- ( k e. NN0 -> 2 e. CC ) |
| 156 |
6
|
a1i |
|- ( k e. NN0 -> _i =/= 0 ) |
| 157 |
155 40 150 156 151
|
dmdcand |
|- ( k e. NN0 -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 158 |
146 154 157
|
3eqtr2d |
|- ( k e. NN0 -> ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 159 |
118 158
|
eqtr4d |
|- ( k e. NN0 -> ( F ` k ) = ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) ) |
| 160 |
159
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( F ` k ) = ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) ) |
| 161 |
2 3 8 31 112 160
|
isermulc2 |
|- ( T. -> seq 0 ( + , F ) ~~> ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) ) |
| 162 |
161
|
mptru |
|- seq 0 ( + , F ) ~~> ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) |
| 163 |
|
bndatandm |
|- ( ( ( _i / 3 ) e. CC /\ ( abs ` ( _i / 3 ) ) < 1 ) -> ( _i / 3 ) e. dom arctan ) |
| 164 |
11 27 163
|
mp2an |
|- ( _i / 3 ) e. dom arctan |
| 165 |
|
atanval |
|- ( ( _i / 3 ) e. dom arctan -> ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) ) |
| 166 |
164 165
|
ax-mp |
|- ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) |
| 167 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 168 |
167
|
oveq1i |
|- ( 4 / 3 ) = ( ( 3 + 1 ) / 3 ) |
| 169 |
|
ax-1cn |
|- 1 e. CC |
| 170 |
9 169 9 10
|
divdiri |
|- ( ( 3 + 1 ) / 3 ) = ( ( 3 / 3 ) + ( 1 / 3 ) ) |
| 171 |
9 10
|
dividi |
|- ( 3 / 3 ) = 1 |
| 172 |
171
|
oveq1i |
|- ( ( 3 / 3 ) + ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
| 173 |
168 170 172
|
3eqtri |
|- ( 4 / 3 ) = ( 1 + ( 1 / 3 ) ) |
| 174 |
169 9 10
|
divcli |
|- ( 1 / 3 ) e. CC |
| 175 |
169 174
|
subnegi |
|- ( 1 - -u ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
| 176 |
|
divneg |
|- ( ( 1 e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> -u ( 1 / 3 ) = ( -u 1 / 3 ) ) |
| 177 |
169 9 10 176
|
mp3an |
|- -u ( 1 / 3 ) = ( -u 1 / 3 ) |
| 178 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 179 |
178
|
oveq1i |
|- ( ( _i x. _i ) / 3 ) = ( -u 1 / 3 ) |
| 180 |
5 5 9 10
|
divassi |
|- ( ( _i x. _i ) / 3 ) = ( _i x. ( _i / 3 ) ) |
| 181 |
177 179 180
|
3eqtr2i |
|- -u ( 1 / 3 ) = ( _i x. ( _i / 3 ) ) |
| 182 |
181
|
oveq2i |
|- ( 1 - -u ( 1 / 3 ) ) = ( 1 - ( _i x. ( _i / 3 ) ) ) |
| 183 |
173 175 182
|
3eqtr2ri |
|- ( 1 - ( _i x. ( _i / 3 ) ) ) = ( 4 / 3 ) |
| 184 |
183
|
fveq2i |
|- ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) = ( log ` ( 4 / 3 ) ) |
| 185 |
9 10
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
| 186 |
|
divsubdir |
|- ( ( 3 e. CC /\ 1 e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) ) |
| 187 |
9 169 185 186
|
mp3an |
|- ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) |
| 188 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 189 |
188
|
oveq1i |
|- ( ( 3 - 1 ) / 3 ) = ( 2 / 3 ) |
| 190 |
171
|
oveq1i |
|- ( ( 3 / 3 ) - ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
| 191 |
187 189 190
|
3eqtr3i |
|- ( 2 / 3 ) = ( 1 - ( 1 / 3 ) ) |
| 192 |
169 174
|
negsubi |
|- ( 1 + -u ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
| 193 |
181
|
oveq2i |
|- ( 1 + -u ( 1 / 3 ) ) = ( 1 + ( _i x. ( _i / 3 ) ) ) |
| 194 |
191 192 193
|
3eqtr2ri |
|- ( 1 + ( _i x. ( _i / 3 ) ) ) = ( 2 / 3 ) |
| 195 |
194
|
fveq2i |
|- ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) = ( log ` ( 2 / 3 ) ) |
| 196 |
184 195
|
oveq12i |
|- ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) |
| 197 |
|
4re |
|- 4 e. RR |
| 198 |
|
4pos |
|- 0 < 4 |
| 199 |
197 198
|
elrpii |
|- 4 e. RR+ |
| 200 |
|
3rp |
|- 3 e. RR+ |
| 201 |
|
rpdivcl |
|- ( ( 4 e. RR+ /\ 3 e. RR+ ) -> ( 4 / 3 ) e. RR+ ) |
| 202 |
199 200 201
|
mp2an |
|- ( 4 / 3 ) e. RR+ |
| 203 |
|
2rp |
|- 2 e. RR+ |
| 204 |
|
rpdivcl |
|- ( ( 2 e. RR+ /\ 3 e. RR+ ) -> ( 2 / 3 ) e. RR+ ) |
| 205 |
203 200 204
|
mp2an |
|- ( 2 / 3 ) e. RR+ |
| 206 |
|
relogdiv |
|- ( ( ( 4 / 3 ) e. RR+ /\ ( 2 / 3 ) e. RR+ ) -> ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) ) |
| 207 |
202 205 206
|
mp2an |
|- ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) |
| 208 |
|
4cn |
|- 4 e. CC |
| 209 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 210 |
|
divcan7 |
|- ( ( 4 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) ) |
| 211 |
208 209 185 210
|
mp3an |
|- ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) |
| 212 |
|
4d2e2 |
|- ( 4 / 2 ) = 2 |
| 213 |
211 212
|
eqtri |
|- ( ( 4 / 3 ) / ( 2 / 3 ) ) = 2 |
| 214 |
213
|
fveq2i |
|- ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( log ` 2 ) |
| 215 |
196 207 214
|
3eqtr2i |
|- ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) = ( log ` 2 ) |
| 216 |
215
|
oveq2i |
|- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) = ( ( _i / 2 ) x. ( log ` 2 ) ) |
| 217 |
166 216
|
eqtri |
|- ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( log ` 2 ) ) |
| 218 |
217
|
oveq2i |
|- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( ( 2 / _i ) x. ( ( _i / 2 ) x. ( log ` 2 ) ) ) |
| 219 |
|
2ne0 |
|- 2 =/= 0 |
| 220 |
5 4 219
|
divcli |
|- ( _i / 2 ) e. CC |
| 221 |
|
logcl |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( log ` 2 ) e. CC ) |
| 222 |
4 219 221
|
mp2an |
|- ( log ` 2 ) e. CC |
| 223 |
7 220 222
|
mulassi |
|- ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) = ( ( 2 / _i ) x. ( ( _i / 2 ) x. ( log ` 2 ) ) ) |
| 224 |
218 223
|
eqtr4i |
|- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) |
| 225 |
|
divcan6 |
|- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( 2 / _i ) x. ( _i / 2 ) ) = 1 ) |
| 226 |
4 219 5 6 225
|
mp4an |
|- ( ( 2 / _i ) x. ( _i / 2 ) ) = 1 |
| 227 |
226
|
oveq1i |
|- ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) = ( 1 x. ( log ` 2 ) ) |
| 228 |
222
|
mullidi |
|- ( 1 x. ( log ` 2 ) ) = ( log ` 2 ) |
| 229 |
224 227 228
|
3eqtri |
|- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( log ` 2 ) |
| 230 |
162 229
|
breqtri |
|- seq 0 ( + , F ) ~~> ( log ` 2 ) |