Metamath Proof Explorer


Theorem absi

Description: The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005)

Ref Expression
Assertion absi
|- ( abs ` _i ) = 1

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 absval
 |-  ( _i e. CC -> ( abs ` _i ) = ( sqrt ` ( _i x. ( * ` _i ) ) ) )
3 1 2 ax-mp
 |-  ( abs ` _i ) = ( sqrt ` ( _i x. ( * ` _i ) ) )
4 cji
 |-  ( * ` _i ) = -u _i
5 4 oveq2i
 |-  ( _i x. ( * ` _i ) ) = ( _i x. -u _i )
6 1 1 mulneg2i
 |-  ( _i x. -u _i ) = -u ( _i x. _i )
7 ixi
 |-  ( _i x. _i ) = -u 1
8 7 negeqi
 |-  -u ( _i x. _i ) = -u -u 1
9 negneg1e1
 |-  -u -u 1 = 1
10 8 9 eqtri
 |-  -u ( _i x. _i ) = 1
11 5 6 10 3eqtri
 |-  ( _i x. ( * ` _i ) ) = 1
12 11 fveq2i
 |-  ( sqrt ` ( _i x. ( * ` _i ) ) ) = ( sqrt ` 1 )
13 sqrt1
 |-  ( sqrt ` 1 ) = 1
14 3 12 13 3eqtri
 |-  ( abs ` _i ) = 1