| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
| 2 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
| 3 |
2
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) e. CC ) |
| 4 |
3
|
abscld |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) e. RR ) |
| 5 |
|
2nn0 |
|- 2 e. NN0 |
| 6 |
|
absexp |
|- ( ( A e. CC /\ 2 e. NN0 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
| 7 |
1 5 6
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
| 8 |
|
simpr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
| 9 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 10 |
9
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
| 11 |
|
1red |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. RR ) |
| 12 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
| 13 |
12
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) ) |
| 14 |
|
0le1 |
|- 0 <_ 1 |
| 15 |
14
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ 1 ) |
| 16 |
10 11 13 15
|
lt2sqd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
| 17 |
8 16
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) |
| 18 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 19 |
17 18
|
breqtrdi |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < 1 ) |
| 20 |
7 19
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) < 1 ) |
| 21 |
4 20
|
ltned |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) =/= 1 ) |
| 22 |
|
fveq2 |
|- ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = ( abs ` -u 1 ) ) |
| 23 |
|
ax-1cn |
|- 1 e. CC |
| 24 |
23
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 25 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 26 |
24 25
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
| 27 |
22 26
|
eqtrdi |
|- ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = 1 ) |
| 28 |
27
|
necon3i |
|- ( ( abs ` ( A ^ 2 ) ) =/= 1 -> ( A ^ 2 ) =/= -u 1 ) |
| 29 |
21 28
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) =/= -u 1 ) |
| 30 |
|
atandm3 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
| 31 |
1 29 30
|
sylanbrc |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. dom arctan ) |