| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) | 
						
							| 2 |  | sqcl |  |-  ( A e. CC -> ( A ^ 2 ) e. CC ) | 
						
							| 3 | 2 | adantr |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) e. CC ) | 
						
							| 4 | 3 | abscld |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) e. RR ) | 
						
							| 5 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 6 |  | absexp |  |-  ( ( A e. CC /\ 2 e. NN0 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) | 
						
							| 7 | 1 5 6 | sylancl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) | 
						
							| 8 |  | simpr |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) | 
						
							| 9 |  | abscl |  |-  ( A e. CC -> ( abs ` A ) e. RR ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) | 
						
							| 11 |  | 1red |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. RR ) | 
						
							| 12 |  | absge0 |  |-  ( A e. CC -> 0 <_ ( abs ` A ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) ) | 
						
							| 14 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 15 | 14 | a1i |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ 1 ) | 
						
							| 16 | 10 11 13 15 | lt2sqd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) ) | 
						
							| 17 | 8 16 | mpbid |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) | 
						
							| 18 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 19 | 17 18 | breqtrdi |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < 1 ) | 
						
							| 20 | 7 19 | eqbrtrd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) < 1 ) | 
						
							| 21 | 4 20 | ltned |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) =/= 1 ) | 
						
							| 22 |  | fveq2 |  |-  ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = ( abs ` -u 1 ) ) | 
						
							| 23 |  | ax-1cn |  |-  1 e. CC | 
						
							| 24 | 23 | absnegi |  |-  ( abs ` -u 1 ) = ( abs ` 1 ) | 
						
							| 25 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 26 | 24 25 | eqtri |  |-  ( abs ` -u 1 ) = 1 | 
						
							| 27 | 22 26 | eqtrdi |  |-  ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = 1 ) | 
						
							| 28 | 27 | necon3i |  |-  ( ( abs ` ( A ^ 2 ) ) =/= 1 -> ( A ^ 2 ) =/= -u 1 ) | 
						
							| 29 | 21 28 | syl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) =/= -u 1 ) | 
						
							| 30 |  | atandm3 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) | 
						
							| 31 | 1 29 30 | sylanbrc |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. dom arctan ) |