Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | bndatandm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | sqcl | |
|
3 | 2 | adantr | |
4 | 3 | abscld | |
5 | 2nn0 | |
|
6 | absexp | |
|
7 | 1 5 6 | sylancl | |
8 | simpr | |
|
9 | abscl | |
|
10 | 9 | adantr | |
11 | 1red | |
|
12 | absge0 | |
|
13 | 12 | adantr | |
14 | 0le1 | |
|
15 | 14 | a1i | |
16 | 10 11 13 15 | lt2sqd | |
17 | 8 16 | mpbid | |
18 | sq1 | |
|
19 | 17 18 | breqtrdi | |
20 | 7 19 | eqbrtrd | |
21 | 4 20 | ltned | |
22 | fveq2 | |
|
23 | ax-1cn | |
|
24 | 23 | absnegi | |
25 | abs1 | |
|
26 | 24 25 | eqtri | |
27 | 22 26 | eqtrdi | |
28 | 27 | necon3i | |
29 | 21 28 | syl | |
30 | atandm3 | |
|
31 | 1 29 30 | sylanbrc | |