Metamath Proof Explorer


Theorem bndatandm

Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion bndatandm AA<1Adomarctan

Proof

Step Hyp Ref Expression
1 simpl AA<1A
2 sqcl AA2
3 2 adantr AA<1A2
4 3 abscld AA<1A2
5 2nn0 20
6 absexp A20A2=A2
7 1 5 6 sylancl AA<1A2=A2
8 simpr AA<1A<1
9 abscl AA
10 9 adantr AA<1A
11 1red AA<11
12 absge0 A0A
13 12 adantr AA<10A
14 0le1 01
15 14 a1i AA<101
16 10 11 13 15 lt2sqd AA<1A<1A2<12
17 8 16 mpbid AA<1A2<12
18 sq1 12=1
19 17 18 breqtrdi AA<1A2<1
20 7 19 eqbrtrd AA<1A2<1
21 4 20 ltned AA<1A21
22 fveq2 A2=1A2=1
23 ax-1cn 1
24 23 absnegi 1=1
25 abs1 1=1
26 24 25 eqtri 1=1
27 22 26 eqtrdi A2=1A2=1
28 27 necon3i A21A21
29 21 28 syl AA<1A21
30 atandm3 AdomarctanAA21
31 1 29 30 sylanbrc AA<1Adomarctan