| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = A -> ( _i x. x ) = ( _i x. A ) ) |
| 2 |
1
|
oveq2d |
|- ( x = A -> ( 1 - ( _i x. x ) ) = ( 1 - ( _i x. A ) ) ) |
| 3 |
2
|
fveq2d |
|- ( x = A -> ( log ` ( 1 - ( _i x. x ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) |
| 4 |
1
|
oveq2d |
|- ( x = A -> ( 1 + ( _i x. x ) ) = ( 1 + ( _i x. A ) ) ) |
| 5 |
4
|
fveq2d |
|- ( x = A -> ( log ` ( 1 + ( _i x. x ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 6 |
3 5
|
oveq12d |
|- ( x = A -> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 7 |
6
|
oveq2d |
|- ( x = A -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 8 |
|
df-atan |
|- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
| 9 |
|
ovex |
|- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. _V |
| 10 |
7 8 9
|
fvmpt |
|- ( A e. ( CC \ { -u _i , _i } ) -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 11 |
|
atanf |
|- arctan : ( CC \ { -u _i , _i } ) --> CC |
| 12 |
11
|
fdmi |
|- dom arctan = ( CC \ { -u _i , _i } ) |
| 13 |
10 12
|
eleq2s |
|- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |