| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-atan |
|- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
| 2 |
|
ovex |
|- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. _V |
| 3 |
2 1
|
dmmpti |
|- dom arctan = ( CC \ { -u _i , _i } ) |
| 4 |
3
|
eleq2i |
|- ( x e. dom arctan <-> x e. ( CC \ { -u _i , _i } ) ) |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
|
halfcl |
|- ( _i e. CC -> ( _i / 2 ) e. CC ) |
| 7 |
5 6
|
ax-mp |
|- ( _i / 2 ) e. CC |
| 8 |
|
ax-1cn |
|- 1 e. CC |
| 9 |
|
atandm2 |
|- ( x e. dom arctan <-> ( x e. CC /\ ( 1 - ( _i x. x ) ) =/= 0 /\ ( 1 + ( _i x. x ) ) =/= 0 ) ) |
| 10 |
9
|
simp1bi |
|- ( x e. dom arctan -> x e. CC ) |
| 11 |
|
mulcl |
|- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
| 12 |
5 10 11
|
sylancr |
|- ( x e. dom arctan -> ( _i x. x ) e. CC ) |
| 13 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. x ) e. CC ) -> ( 1 - ( _i x. x ) ) e. CC ) |
| 14 |
8 12 13
|
sylancr |
|- ( x e. dom arctan -> ( 1 - ( _i x. x ) ) e. CC ) |
| 15 |
9
|
simp2bi |
|- ( x e. dom arctan -> ( 1 - ( _i x. x ) ) =/= 0 ) |
| 16 |
14 15
|
logcld |
|- ( x e. dom arctan -> ( log ` ( 1 - ( _i x. x ) ) ) e. CC ) |
| 17 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. x ) e. CC ) -> ( 1 + ( _i x. x ) ) e. CC ) |
| 18 |
8 12 17
|
sylancr |
|- ( x e. dom arctan -> ( 1 + ( _i x. x ) ) e. CC ) |
| 19 |
9
|
simp3bi |
|- ( x e. dom arctan -> ( 1 + ( _i x. x ) ) =/= 0 ) |
| 20 |
18 19
|
logcld |
|- ( x e. dom arctan -> ( log ` ( 1 + ( _i x. x ) ) ) e. CC ) |
| 21 |
16 20
|
subcld |
|- ( x e. dom arctan -> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) e. CC ) |
| 22 |
|
mulcl |
|- ( ( ( _i / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) e. CC ) -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. CC ) |
| 23 |
7 21 22
|
sylancr |
|- ( x e. dom arctan -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. CC ) |
| 24 |
4 23
|
sylbir |
|- ( x e. ( CC \ { -u _i , _i } ) -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. CC ) |
| 25 |
1 24
|
fmpti |
|- arctan : ( CC \ { -u _i , _i } ) --> CC |