Metamath Proof Explorer


Theorem atanval

Description: Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanval AdomarctanarctanA=i2log1iAlog1+iA

Proof

Step Hyp Ref Expression
1 oveq2 x=Aix=iA
2 1 oveq2d x=A1ix=1iA
3 2 fveq2d x=Alog1ix=log1iA
4 1 oveq2d x=A1+ix=1+iA
5 4 fveq2d x=Alog1+ix=log1+iA
6 3 5 oveq12d x=Alog1ixlog1+ix=log1iAlog1+iA
7 6 oveq2d x=Ai2log1ixlog1+ix=i2log1iAlog1+iA
8 df-atan arctan=xiii2log1ixlog1+ix
9 ovex i2log1iAlog1+iAV
10 7 8 9 fvmpt AiiarctanA=i2log1iAlog1+iA
11 atanf arctan:ii
12 11 fdmi domarctan=ii
13 10 12 eleq2s AdomarctanarctanA=i2log1iAlog1+iA